Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 35 | 4 | 397-408
Tytuł artykułu

Applications of Electrical Capacitance Tomography for Research on Phenomena Occurring in the Fluidised Bed Reactors

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper presents a review of current achievements in the Electrical Capacitance Tomography (ECT) in relation to its possible applications in the study of phenomena occurring in fluidised bed reactors. Reactors of that kind are being increasingly used in chemical engineering, energetics (fluidised bed boilers) or industrial dryers. However, not all phenomena in the fluidised bed have been thoroughly understood. This results in the need to explore and develop new research methods. Various aspects of ECT operation and data processing are described with their applicability in scientific research. The idea for investigation of temperature distribution in the fluidised bed, using multimodal tomography, is also introduced. Metrological requirements of process tomography such as sensitivity, resolution, and speed of data acquiring are noted.

Opis fizyczny
  • Cracow University of Technology, Institute of Thermal Engineering and Air Quality Protection, Warszawska 24, 31-155 Kraków, Poland,
  • Alme K.J., Mylvaganam S., 2006. Electrical Capacitance Tomography - sensor models, design, simulations and experimental verification. IEEE Sensors J., 6, 1256-1266. DOI: 10.1109/JSEN.2006.881409.[Crossref]
  • Asami K., 2002. Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Poly. Sci., 27, 1617-1659. DOI: 10.1016/S0079-6700(02)00015-1.[Crossref]
  • Banasiak R., Wajman R., Jaworski T., Fiderek P., Fidos H., Nowakowski J., Sankowski D., 2014. Study on twophase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. Int. J. Multiphas. Flow, 58, 1-14. DOI: 10.1016/j.ijmultiphaseflow.2013.07.003.[Crossref]
  • Basu P., 2006. Combustion and gasification in fluidized bed. CRC Press.
  • Burggraeve A., Monteyne T., Vervaet Ch., Remon J.P., De Beer T., 2013. Process analytical tools for monitoring, understanding and control of pharmaceutical fluidized bed granulation: A review. Eur. J. Pharm. Biopharm., 83, 1-15. DOI: 10.1016/j.ejpb.2012.09.008.[Crossref]
  • Cai R., Zhang Y., Li Q., Meng A., 2013. Tracing the motion of a large object in a fluidized bed using electrical capacitance tomography. Flow Meas. Instrum., 33, 1-9. DOI: 10.1016/j.flowmeasinst.2013.04.009.[Crossref]
  • Chełkowski A., 2009. Physics of dielectrics. PWN (in Polish).
  • Cui Z., Wang H., Xu Y., Zhang L., Yan Y., 2009. An integrated ECT/ERT dual modality sensor. International Instrumentation and Measurement Technology Conference, Singapore, 5-7 May 2009.
  • Dyakowski T., Jeanmeure L.F.C., Jaworski A.J., 2000. Applications of electrical tomography for gas-solids and liquid-solids flows - A review. Powder Technol., 112, 174-192. DOI: 10.1016/S0032-5910(00)00292-8.[Crossref]
  • Escudero D., Heindel T., 2011. Bed height and material density effects on fluidized bed hydrodynamics. Chem. Eng. Sci., 66, 3648-3655. DOI: 10.1016/j.ces.2011.04.036.[Crossref]
  • Filipowicz S.F., 2011. Modern methods and algorithms of process tomography. BEL Studio Sp.z o.o. (in Polish).
  • Gao H., Xu Ch., Fu F., Wang S., 2012. Effects of particle charging on electrical capacitance tomography system. Measurement, 45, 375-383. DOI: 10.1016/j.measurement.2011.11.007.[Crossref]
  • George D.L, Shollenberger K.A., Torczynski J.R., O’Hern T.J., Ceccio S.L., 2001. Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography. Int. J. Multiphase Flow, 27, 1903-1930. DOI: 10.1016/S0301-9322(01)00042-8.[Crossref]
  • Holland D.J., Marashdeh Q., Müller C.R., Wang F., Dennis J.S., Fan L.S., Gladden L.F., 2009. Comparison of ECVT and MR measurements of voidage in a gas-fluidized bed. Ind. Eng. Chem. Res., 48, 172-181. DOI: 10.1021/ie8002073.[Crossref]
  • Ismail I., Gamio J.C., Bukhari S.F.A., Yang W.Q., 2005. Tomography for multi-phase measurement in the oil industry. Flow Meas. Instrum. 16, 145-155. DOI:10.1016/jflowmeasinst.2005.02.017.[Crossref]
  • Jiang Y., Qiu G., Wang H., 2014. Modelling and experimental investigation of the full-loop gas-solid flow in a circulating fluidized bed with six cyclone separators. Chem. Eng. Sci. 109, 85-97. DOI: 10.1016/j.ces.2014.01.029.[Crossref]
  • Kourunen J., Kayhko R., Matula J., Kayhko J., Vauhkonen M., Heikkinen L., 2008. Imaging of mixing of two miscible liquids using electrical impedance tomography and linear impedance sensor. Flow Meas. Instrum., 19, 391-396. DOI: 10.1016/j.flowmeasinst.2008.07.002.[Crossref]
  • Li Y., Soleimani M., 2013. Imaging conductive materials with high frequency electrical capacitance tomography. Measurement, 46, 3355-3361. DOI: 10.1016/j.measurement.2013.05.020.[Crossref]
  • Liu S., Yang W.Q., Wang H., Yan G., Pan Z., 2001. Flow pattern identification of fluidized beds using ECT. J. Therm. Sci., 10, 176-181. DOI: 10.1007/s11630-001-0062-1.[Crossref]
  • Liu Z., He M., Xiong H., 2005. Simulation study of the sensing field in electromagnetic tomography for twophase flow measurement. Flow Meas. Instrum., 16, 199-204. DOI: 10.1016/j.flowmeasinst,2005.02.008.[Crossref]
  • Makkawi Y.T., Wright P.C., 2002. Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography. Chem. Eng. Sci. 57, 2411-2437. DOI: 10.1016/S0009-2509(02)00138-0.[Crossref]
  • Makkawi Y.T., Wright P.C., 2002. Optimization of experiment span and data acquisition rate for reliable electrical capacitance tomography measurement in fluidization studies - a case study. Meas. Sci. Technol. 13, 1831-1841. DOI: 10.1088/0957-0233/13/12/305.[Crossref]
  • Makkawi Y.T., Wright P.C., 2004. Electrical capacitance tomography for conventional fluidized bed measurements - remarks on the measuring technique. Powder Technol. 148, 142-157. DOI: 10.1016/j.powtec.2004.09.006.[Crossref]
  • Makkawi Y.T., Ocone R., 2007. Integration of ECT measurements with hydrodynamic modelling of conventional gas-solid bubbling bed. Chem. Eng. Sci., 62, 4304-4315. DOI: 10.1016/j.ces.2006.11.048.[Crossref]
  • Marashdeh Q., Warsito W., Fan L.-S., Teixeira F., 2007. A multimodal tomography system based on ECT sensors. IEEE Sensors J., 7, 426-432. DOI: 10.1109/JSEN.2006.890149.[Crossref]
  • Peyton A.J., Yu Z.Z., Lyon G., Al-Zeibak S., Ferreira J., Velez J., Linhares F., Borges A.R., Xiong H.L., Saunders N.H., Beck M.S., 1996. Overview of electromagnetic inductance tomography: description of three different systems. Meas. Sci. Technol., 73, 261-271. DOI: 10.1088/0957-0233/7/3/006.[Crossref]
  • Peyton A.J., Beck M.S., Borges A.R., de Oliveira J.E., Lyon G.M., Yu Z.Z., Brown M.W., Ferrerra J., 1999. Develpment of electromagnetic tomography for industrial applications. Part 1: Sensor design and instrumentation. 1st World Congress on Industrial Process Tomography, Buxton, 14-17 April 1999.
  • Porzuczek J., 2012. Optimization of the fluidized bed boilers operation in nonstationary states. Monograph, Environmental Engineering Series, Cracow University of Technology, Krakow (in Polish).
  • Pradeep Ch., Ru Y., Mylvaganam S., 2012. Reverse flow alarm activation using electrical capacitance tomometric (ECTm) correlation. Sensors Applications Symposium (SAS), 2012 IEEE. 7-9 February 2012, 1-5. DOI: 10.1109/SAS.2012.6166311.[Crossref]
  • Pugsley T., Tanfara H., Malcus S., Cui H., Chaouki J., Winters C., 2003. Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe. Chem. Eng. Sci., 58, 3923-3934. DOI: 10.1016/S0009-2509(03)00288-4.[Crossref]
  • Qiu C., Hoyle B.S., Podd F.J.W., 2007. Engineering and application of a dual modality process tomography system. Flow Meas. Instrum., 18, 247-254. DOI: 10.1016/j.flowmeasinst.2007.07.008.[Crossref]
  • Rautenbach Ch., Melaaen M.C., Halvorsen B.M., 2013. Statistical diagnosis of a gas-solid fluidized bed using Electrical Capacitance Tomography. Int. J. Multiphase Flow, 49, 70-77. DOI: 10.1016/j.ijmultiphaseflow.2012.10.002.[Crossref]
  • Rautenbach Ch., Mudde R.F., Yang X., Melaaen M.C., Halvorsen B.M., 2013. A comparative study between electrical capacitance tomography and time-resolved X-ray tomography. Flow Meas. Instrum., 30, 34-44. DOI: 10.1016/j.flowmeasinstrum.2012.11.005.[Crossref]
  • Rimpilainen V., Heikinnen L., Vauhkonen M., 2012. Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying with volumetric electrical capacitance tomography. Chem. Eng. Sci., 75, 220-234. DOI: 10.1016/j.ces.2012.03028.[Crossref]
  • Smart J., Yan Y., Riley G., 2010. Characterisation of an oxy-coal flame through digital imaging. Combust. Flame, 157, 1132-1139. DOI: 10.1016/j.combustflame.2009.10.017.[Crossref]
  • Soleimani M., Lionheart W.R.B., Dorn O., 2006. Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data. Inverse Probl. Sci. En., 14, 193-210. DOI: 10.1080/17415970500264152.[Crossref]
  • Stanley S.J., 2006. Tomographic imaging during reactive precipitation in a stirred vessel: Mixing with chemical reaction. Chem. Eng. Sci., 61, 7850-7863. DOI: 10.1016/j.ces.2006.09.029.[Crossref]
  • Tapp H.S., Peyton A.J., Kemsley E.K., Wilson R.H., 2003. Chemical engineering applications of electrical process tomography. Sensor. Actuator. B-Chem., 92, 17-24. DOI: 10.1016/S0925-4005(03)00126-6.[Crossref]
  • Thorp J.S., Bushell T.G., Evans D., Rad N.E., 1987. The temperature and frequency dependencies of permittivity and dielectric loss in reaction bonded silicon nitride. J. Mater. Sci., 22, 2641-2644. DOI: 10.1007/BF01082157.[Crossref]
  • Wang F., Marashdeh Q., Fan L.-S., Warsito W., 2010. Electrical capacitance volume tomography: Design and applications. Sensors, 10, 1890-1917. DOI: 10.3390/s100301890.[Crossref]
  • Wang F., Yu Z., Marashdeh Q., Fan L.-S., 2010. Horizontal gas and gas/solid jet penetration in gas-solid fluidized bed. Chem. Eng. Sci., 65, 3394-3408. DOI: 10.1016/j.ces.2010.02.036.[Crossref]
  • Wang H.G., Senior P.R., Mann R., Yang W.Q., 2009. Online measurement and control of solids moisture in fluidised bed dryers. Chem. Eng. Sci., 64, 2893-2902. DOI: 10.1016/j.ces.2009.03.014.[Crossref]
  • Wang S.J., Dyakowski T., Xie C.G.,Williams R.A., Beck M.S., 1995. Real time capacitance imaging of bubble formation at the distributor of a fluidized bed. Chem. Eng. J., 56, 95-100. DOI: 10.1016/0923-0467(94)02916-4.[Crossref]
  • Wang M., Ramskill N.P., Barns S., Raynel G., Qiu Ch., Rayner Ch., 2013. A feasible process tomography and spectroscopy measurement system to determine carbon dioxide absorption. Flow Meas. Instrum. 31, 77-85. DOI 10.1016/ j.flowmeasinst.2012.09.005.[Crossref]
  • Wang Z., Chen Q., Qang X., Li Z., Han Z., 2012. Dynamic visualization approach of the multiphase flow using electrical capacitance tomography. Chinese J. Chem. Eng., 20, 380-388. DOI: 10.1016/S1004-9541(12)60401-7. Warsito W., Fan L.-S., 2001. Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography (ECT). Chem. Eng. Sci. 56, 6455-6462. DOI: 10.1016/S0009-2509(01)00234-2.[Crossref]
  • Warsito W., Fan L.-S., 2005. Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT. Chem. Eng. Sci. 60, 6073-6084. DOI: 10.1016/j.ces.2005.01.033.[Crossref]
  • Weber J.M., Mei J.S., 2013. Bubbling fluidized bed characterization using Electrical Capacitance Volume Tomography (ECVT). Powder Technol. 242, 40-50. DOI: 10.1016/j.powtec.2013.01.044.[Crossref]
  • Werther J., 1999. Measurement techniques in fluidized bed. Powder Technol., 102, 15-36. DOI: 10.1016/S0032-5910(98)00202-2.[Crossref]
  • Wiesendorf V., Werther J., 2000. Capacitance probes for solid concentration and velocity measurements in industrial fluidized bed reactors. Powder Technol., 110, 143-157. DOI: 10.1016/S0032-5910(99)00276-4.[Crossref]
  • Xie C.G., Reinecke N., Beck M.S., Mewes D., Williams R.A., 1995. Electrical tomography techniques for process engineering applications. Chem. Eng. J., 56, 127-133. DOI: 10.1016/0923-0467(94)02907-5.[Crossref]
  • Yang Ch., Cui Z., Xue Q., Wang H., Zhang D., Geng Y., 2014. Application of a high speed ECT system to online monitoring of pneumatic conveying process. Measurement, 48, 29-42. DOI: 10.1016/j.measurement.2013.10.024.[Crossref]
  • Yang G.Q., Du B., Fan L.-S., 2007. Bubble formation and dynamics in gas-liquid-solid fluidization - A review. Chem. Eng. Sci., 62, 2-27. DOI: 10.1016/j.ces.2006.08.021.[Crossref]
  • Yang W., 2007. Tomographic imaging based on capacitance measurement and industrial applications. I. W. Imag. Syst. Techni. IST 2007., 1-6. DOI: 10.1109/IST.2007.379587.[Crossref]
  • Yang Y., Yang W., Zhong H., 2008. Temperature distribution measurement and control of extrusion process by tomography. I. W. Imag. Syst. Techni. IST 2008, 170-174. DOI: 10.1109/IST.2008.4659963.[Crossref]
  • Yan Y., Qiu T., Lu G., Hossain M.M., Gilabert G., Liu S., 2012. Recent advances in flame tomography. Chin. J. Chem. Eng., 20, 389-399. DOI: 10.1016/S1004-9541(12)60402-9.[Crossref]
  • Yan H., Shao F., Wang S., 1999. Simulation study of capacitance tomography sensors. 1st World Congress on Industrial Process Tomography. Buxton, 14-17 April 1999.
  • Zhao T., Takei M., Doh D., 2010. ECT measurement and CFD-DEM simulation of particle distribution in a down-flow fluidized bed. Flow Meas. Instrum., 21, 212-218. DOI: 10.1016/j.flowmeasinst.2009.12.008.[Crossref]
  • Żukowski W., Baron J., Bulewicz M.B., Kowarska B., 2009. An optical method of measuring the temperature in a fluidised bed combustor. Combust. Flame, 156, 1445-1452. DOI: 10.1016/j.combustflame.2009.03.004.[Crossref]
  • Żukowski W., Baron J., Kowarska B., Olek M., Zabagło J., 2011. Thermal regeneration of bleaching earth in a fluidized bed reactor. Przemysł Chemiczny, 90, 1107-1112 (in Polish).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.