PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 34 | 3 | 313-325
Tytuł artykułu

Modelling of Postproduction Suspensions’ Concentration Processes by “Batch” Membrane Microfiltration

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mathematical model of postproduction suspension concentration by microfiltration has been developed. This model describes a process conducted in a batch system with membrane washing by reverse flow of permeate. The model considerations concern filtration pseudocycles consisting of the filtration period and the membrane washing period. The balances of continuous phase volume, dispersed phase mass and energy, for each period of pseudocycle respectively, have been presented.
Wydawca
Rocznik
Tom
34
Numer
3
Strony
313-325
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-10-08
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland , mszwast@ichip.pw.edu.pl
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Institute for Sustainable Technologies – National Research Institute in Radom, ul. K. Pułaskiego 6/10, 26-600 Radom, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • Chellam S., 2005. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci., 258, 35-42. DOI: 10.1016/j.memsci.2004.11.038.[Crossref]
  • Gan Q., Xue M., Rooney D., 2006. A study of fluid properties and microfiltration characteristics of room temperature ionic liquids [C10-min][NTf2] and N8881[NTf2] and their polar solvent mixtures. Sep. Purif. Technol., 51, 185-192. DOI:10.1016/j.seppur.2006.01.011.
  • Le Goff P., 1983. Optimization of the regenerative and replacement cycles of a catalyst. A very simple zero-order model. Intern. Chem. Eng., 23, 2, 225-237.
  • Hasan A., Peluso C.R., Hull T.S., Fieschko J., Chatterjee S.G., 2013. A surface-renewal model of cross-flow microfiltration. Braz. J. Chem. Eng., 30, 1, 167-186. DOI: 10.1590/S0104-66322013000100019.[Crossref][WoS]
  • Makardij A.A., Farid M.M., Chen X.D., 2002. A simple and effective model for cross-flow microfiltration and ultrafiltration. Can. J. Chem. Eng., 80, 28-36. DOI: 10.1002/cjce.5450800103.[Crossref]
  • Piątkiewicz W., 2012. Selected aspects of designing membrane filtration systems in the cross-flow. Scientific Publishing Houses of the Institute of for Sustainable Technologies - National Research Institute in Radom, Radom (in Polish).
  • Pohorecki R., Wroński S., 1977. Kinetics and thermodynamics of chemical engineering processes. WNT, Warsaw (in Polish).
  • Silva C.M., Reeve D.W., Husain H., Rabie H.R., Woodhouse K.A., 2000. Model for flux prediction in high-shear microfiltration systems. J. Membrane Sci., 173, 87-98. DOI: 10.1016/S0376-7388(00)00355-0.[Crossref]
  • Wang Z., Cui Y., Wu W., Ji S., Yao J., Zhang H., Zhao X., 2009. The convective model of flux prediction in a hollow-fiber module for a steady-state cross-flow microfiltration system. Desalination, 238, 192-209. DOI: 10.1016/j.desal.2008.02.013.[Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_cpe-2013-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.