PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 1 | 7-24
Tytuł artykułu

Enhancing photocell power by noise-induced coherence

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that coherence induced by Fano interference can enhance the power produced by photovoltaic devices, e.g. photodetectors and solar cells, as compared to the same system with no coherence. No additional external energy source is necessary to create such induced coherence. In the present model, coherence generated by photocurrent increases (for optically thin cells) the flow of electrons through the load, which reduces radiative recombination and enhances cell power. We discuss two schemes in which coherence is generated between upper or lower energy levels. We also study the influence of decoherence, τa, on cell power and show that one can design a device with Fano enhancement even at relatively large decoherence rates. Finally we investigate the effect of ambient temperature Ta on the cell power in a scheme with no interference and show that for certain parameters power can be increased by increasing Ta.
Słowa kluczowe
EN
Wydawca

Czasopismo
Rocznik
Tom
1
Strony
7-24
Opis fizyczny
Daty
otrzymano
2012-11-09
zaakceptowano
2012-12-14
online
2012-12-27
Twórcy
  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
  • University of California, Irvine, CA 92697
  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
  • Baylor University, Waco, TX 76706
Bibliografia
  • P. Würfel, Physics of Solar Cells (Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim) 2009.
  • W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510(1961).
  • J. Nelson, The Physics of Solar Cells (Imperial CollegePress) p. 38 (2003).
  • P. Würfel, Chimia 61, 770 (2007).
  • R.C. Tolman, The Principles of Statistical Mechanics(Oxford University Press, London, UK) 1938.
  • R.H. Fowler, Statistical Mechanics. The Theory of theProperties of matter in Equilibrium (Cambridge UniversityPress, Cambridge, UK) 1996.
  • M.O. Planck, Annalen der Physik 4, 553 (1901).[Crossref]
  • A. Einstein, Annalen der Physik 17, 132 (1905).[Crossref]
  • A. Einstein, Physikalische Zeitschrift 18, 121 (1917).
  • M. Sargent, M.O. Scully and W. Jr. Lamb, LaserPhysics (Addison-Wesley, Reading, Mass.) 1974.
  • J.P. Gordon, H.J. Zeiger and C.H. Townes, Phys. Rev.95, 282 (1957).
  • H.E.D. Scovil and E.O. Schulz-DuBois, Phys. Rev.Lett. 2, 262 (1959).
  • For review articles on LWI theory and concepts seeO. Kocharovskaya, Phys. Rep. 219, 175 (1992); S.Harris, Phys. Today 50, 36 (1997).[Crossref]
  • M.O. Scully and M.S. Zubairy, Quantum Optics(Cambridge University Press, Cambridge, UK) 1997.
  • M. Fleischhauer, A. Imamoglu and J.P. Marangos, Rev.Mod. Phys. 77, 633 (2005).
  • W.W. Chow, H.C. Schneider and M.C. Phillips, Phys.Rev. A 68, 053802 (2003).
  • W.W. Chow, S. Michael and H.C. Schneider, J. Mod.Opt. 54, 2413 (2007).
  • A.A. Belyanin, F. Capasso, V.V. Kocharovsky, Vl.V.Kocharovsky and M.O. Scully, Phys. Rev. A 63,053803 (2001).
  • The quantum photon engine is treated in M.O. Scully,S. Zubairy, G. Agarwal and H. Walther, Science 299,862 (2003). The classical photon heat engine is nicelydiscussed in M.H. Lee, Am. J. Phys. 69, 874 (2001).
  • M.O. Scully, Phys. Rev. Lett. 106, 049801 (2011);arXiv:1012.5321v2 [quant-ph].
  • M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010).[PubMed]
  • K.E. Dorfman, M.B. Kim, A.A. Svidzinsky, Phys. Rev.A 84, 053829 (2011).
  • A. Kirk, Phys. Rev. Lett. 106, 048703 (2011).[PubMed]
  • S. Harris, Phys. Rev. Lett. 62, 1033 (1989).[PubMed]
  • U. Fano, Phys. Rev. 124, 1866 (1961).
  • G. Agarwal, Quantum Statistical Theories of SpontaneousEmissions and Their Relation to other ApproachesSpringer Tracts in Modern Physics Vol. 70(Springer, Berlin) 1974.
  • W. Schleich, Quantum Optics in Phase Space (Wiley-VCH) 2002.
  • A.A. Svidzinsky, K.E. Dorfman and M.O. Scully, Phys.Rev. A 84, 053818 (2011).
  • M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kimand A.A. Svidzinsky, PNAS 108, 15097 (2011).[Crossref]
  • H. Schmidt, K.L. Campman, A.C. Gossard and A.Imamoglu, Appl. Phys. Lett 70, 3455 (1997).
  • J. Faist, F. Capasso, C. Sirtori, K.W. West and L.N.Pfeifer, Nature 390, 58 (1997).
  • M. Kroner et al., Nature 451, 311 (2008).
  • T. Dell’Orto, M. Di Ventra, J. Almeida, C. Coluzza andG. Margaritondo, Phys. Rev. B 52, 2265 (1995).
  • A. Nozik, Physica (Amsterdam) 14E, 115 (2002).[Crossref]
  • P. Meystre and M. Sargent III, Elements of QuantumOptics 3rd ed. (Springer-Verlag, Berlin, Ch. 15) 1998.
  • E.M. Lifshitz and L.P. Pitaevskii, Physical KineticsTheoretical Physics, Vol. X, (Nauka, Moscow) 1979.
  • A. Rose, J. Appl. Phys. 31, 1640 (1960).
  • V. Kozlov, Yu. Rostovtsev and M.O. Scully, Phys. Rev.A 74, 063829 (2006). The Agarwal-Fano process ofthe present paper, is modeling a quantum dot solarcell placed in a hohlraum which is driven by narrowband isotropic radiation. However, one can extend thepresent analysis to the case of directional incidentsolar radiation and isotropic spontaneous emission.
  • C.H. Henry, J. Appl. Phys. 51, 4494 (1980).
  • W. Guter et al., Appl. Phys. Lett. 94, 223504 (2009).
  • R.R. King et al., Appl. Phys. Lett. 90, 183516 (2007);R.R. King et al., Advances in OptoElectronics 2007,29523 (2007).
  • A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014(1997).
  • A. Luque, P.G. Linares, E. Antolin, E. Canovas, C.D.Farmer, C.R. Stanley and A. Marti, Appl. Phys. Lett.96, 013501 (2010).
  • T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98,171108 (2011).
  • J. Li M. Chong, J. Zhu, Y.Li J. Xu, P. Wang, Z. Shang,Z. Yang, R. Zhu and X. Cao, Appl. Phys. Lett. 60, 2240(1992).
  • J. Bruns, W. Seifert, P. Wawer, H. Winnicke, D. Braunigand H.G. Wagemann, Appl. Phys. Lett. 64, 2700(1994).
  • H. Kasai, H. Matsumura, Sol. Energy Mater. Sol.Cells 48, 93 (1997).
  • A. Luque, J. Appl. Phys. 11, 031301 (2011).
  • K. Barnham and G. Duggan, J. Appl. Phys. 67, 3490(1990); K.W.J. Barnham et al., Physica E (Amsterdam)14, 27 (2002).
  • A. Nozik, Physica E 14, 115 (2002).
  • S.A. Blokhin et al., Semiconductors 43, 514 (2009).
  • E.C. Cho et al., Nanotechnology 19, 245201 (2008).[Crossref]
  • V. Aroutiounian, S. Petrosyan, A. Khachatryan and K.Touryan, J. Appl. Phys. 89, 2268 (2001).
  • A. Alguno et al., Appl. Phys. Lett. 83, 1258 (2003).
  • U. Aeberhard and R.H. Morf, Phys. Rev. B 77, 125343(2008).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_coph-2012-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.