PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1-2 | 61-68
Tytuł artykułu

Nitrate reductase activity in chosen mosses: a case of study in skalny colliery waste tip / Aktywność reduktazy azotanowej u wybranych mchów na przykładzie hałdy powęglowej skalny

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two species of mosses in relation to nitrogen metabolism were examined. This subject is little known in this group of plant. Investigations of nitrate reductase activity in green tissues of Brachythecium rutabulum (Hedw.) Schimp. and Atrichum undulatum (Hedw.) P.Beauv. were performed. The study was conducted in two localities: heavy contaminated waste tip Skalny located in Upper Silesia, and Blonia City Park in Bielsko-Biala which place was chosen as a control area. For both species high activity of the enzyme was detected. The nitrate reductase activity varied between 99 to 9093 nmol per g dry mass per hour for B. rutabulum and 265 to 5135 nmol per g d.m. per hour of nitrite synthesized for A. undulatum respectively on Skalny waste tip. In the control area the results varied between 747 to 1077 for B. rutabulum and 171 to 518 nmol per g d.m. per hour of nitrite synthesized for A. undulatum, respectively. The differences were statistically significant only between the two species but not between habitats probably due to high dispersion and small amount of replications. The levels of nitrate and nitrite in stream water in both areas were also measured. In the Skalny waste tip there were high and reached 1.66 mg · dm-3 of nitrite and 65 mg · dm-3 of nitrate, respectively. In the control area these amounts were lower and reach zero level for nitrite and 4.5 mg · dm-3 of nitrate, respectively.
PL
Dwa gatunki mchów badano pod kątem asymilacji azotu. To zagadnienie jest mało poznane u tej grupy roślin. Przeprowadzono badania aktywności reduktazy azotanowej w zielonych tkankach Brachythecium rutabulum (Hedw.) Schimp. i Atrichum undulatum (Hedw.) P.Beauv. Badania zostały wykonane w dwóch miejscach: na hałdzie powęglowej Skalny na Górnym Śląsku i w parku w dzielnicy Błonia w Bielsku-Białej, które zostało wybrane jako miejsce kontrolne. Dla obu gatunków stwierdzono wysoką aktywność enzymu. Aktywność reduktazy azotanowej wahała się od 99 do 9093 nmol na g suchej masy na godzinę dla B. rutabulum i 265 do 5135 nmol na g suchej masy na godzinę azotynu syntetyzowanego u A. undulatum na hałdzie Skalny. W miejscu kontrolnym wyniki wahały się od 747 do 1077 dla B. rutabulum i 171 do 518 nmol na g sm/h u A. undulatum. Różnice były statystycznie znaczące tylko pomiędzy gatunkami, ale nie pomiędzy typem siedliska prawdopodobnie ze względu na wysoką dyspersję i małą liczbę powtórzeń. Zmierzono także poziom azotanów i azotynów w strumieniu wody w obu miejscach. Na hałdzie Skalny zawartość była wysoka i osiągnęła odpowiednio: 1,66 mg dm-3 azotynu oraz 65 mg dm-3 azotanu. W miejscu kontrolnym wartości te były niższe i osiągnęły odpowiednio poziom zerowy dla azotynów i 4,5 mg dm-3 dla azotanu.
Wydawca

Rocznik
Tom
18
Numer
1-2
Strony
61-68
Opis fizyczny
Daty
wydano
2013-12-01
online
2014-01-22
Twórcy
  • Institute of Environmental Protection and Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland, m.krywult@ath.bielsko.pl
  • Institute of Environmental Protection and Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute of Environmental Protection and Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute of Environmental Protection and Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • [1] Norby RJ. Foliar nitrate reductase: a marker for assimilation of atmospheric nitrogen oxides. In: Biologic Markers of Air - Pollution Stress and Damage in Forests. Washington DC: National Academy Press; 1989.
  • [2] Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD. Foliar and fine root nitrate reductase activity in seedlings of four forest tree species in relation to nitrogen availability. Trees. 1993;7:233-236. DOI: 10.1007/BF00202079.[Crossref]
  • [3] Krywult M, Karolak A, Bytnerowicz A. Nitrate reductase activity as an indicator of Ponderosa pine (Pinus ponderosa Dougl. ex. Laws) response to atmospheric nitrogen deposition in the San Bernardino Mountains. Environ Pollut. 1996;93(2):141-146. DOI: 10.1016/0269-7491(96)00033-4.[Crossref]
  • [4] Krywult M, Smykla J, Wincenciak A. The presence of nitrates and the impact of ultraviolet radiation as factors that determine nitrate reductase activity and nitrogen concentrations in Deschampsia antarctica Desv. around penguin rookeries on King George Island, Maritime Antarctica. Water Air Soil Pollut. 2013;224(5):1-12. DOI: 10.1007/s11270-013-1563-8.[Crossref]
  • [5] Mälkönen E. Estimation of nitrogen saturation on the basis of long-term fertilization experiments. Plant Soil. 1990;128:75-82. DOI: 10.1007/BF00009398.[Crossref]
  • [6] Nilsson L-O, Wiklund K. Nutrient balance and P, K, Ca, Mg, S and B accumulation in a Norway spruce stand following ammonium sulphate application, fertigation, irrigation, drought and N-free-fertilisation. Plant Soil. 1995;168-169:437-446. DOI: 10.1007/978-94-011-0455-5_50.[Crossref]
  • [7] Perez-Soba M, Van Deer Eerden LJM. Nitrogen uptake in needles of Scots pine Pinus sylvestris L. when exposed to gaseous ammonia and ammonium fertilizer in the soil. Plant Soil. 1993;153:231-242. DOI: 10.1007/BF00012996.[Crossref]
  • [8] Smirnoff N, Todd P, Steward GR. The occurrence of nitrate reduction in the leaves of woody plants. Ann Bot. 1984;54:363-374.
  • [9] Wingsle GT, Nasholm T, Lundmark T, Ericsson A. Induction of nitrate reductase in needles of Scots pine by NOx and NO3. Physiol Plant. 1987;70:399-403. DOI: 10.1111/j.1399-3054.1987.tb02835.x.[Crossref]
  • [10] Krywult M, Bytnerowicz A. Induction of nitrate reductase activity by nitric acid vapor in California black oak (Quercus kelloggii), canyon live oak (Quercus chrysolepis ), and Ponderosa pine (Pinus ponderosa) seedlings. Can J For Res. 1997;27:2101-2104. DOI: 10.1139/x97-145.[Crossref]
  • [11] Crawford NM, Wilkinson JQ, La Brie ST. Control of nitrate reduction in plants. Aust J Plant Physiol. 1992;19:377-385. DOI: 10.1071/PP9920377.[Crossref]
  • [12] Norby RJ, Weerasurija Y, Hanson PJ. Induction of nitrate reductase activity in red spruce needles by NO2 and HNO3 vapor. Can J For Res. 1989;19:889-896. DOI: 10.1139/x89-135.[Crossref]
  • [13] Sinha RP, Krywult M, Haeder DP. Effects of ultraviolet, monochromatic and PAR wavebend on nitrate reductase activity and pigmentation in a rice field cyanobacterium Anabaena sp. Acta Hydrobiol. 1998;40:105-112.
  • [14] Chmura D, Molenda T. Influence of thermally polluted water on the growth of helophytes in the vicinity of a colliery waste tip. Water Air Soil Poll. 2012;223(9):5877-5884. DOI: 10.1007/s11270-012-1323-1.[Crossref][WoS]
  • [15] Woźniak G. Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland). Kraków: Szafer Institute of Botany, Polish Academy of Sciences; 2010.
  • [16] Dierssen K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca. 2001;56:1-289.
  • [17] Smith AJE. The Moss Flora of Britain and Ireland. Second edition. Cambridge University Press; 2008.
  • [18] Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. In: Faliński JB, editor. Vademecum Geobotanicum. Warszawa: Wyd. Nauk. PWN; 2001.
  • [19] Klama H, Żarnowiec J, Jędrzejko K. Mszaki naziemne w strukturze zbiorowisk roślinnych rezerwatów przyrody Makroregionu Południowego Polski. Bielsko-Biała: Politechnika Łódzka Filia w Bielsku-Białej; 1999.
  • [20] Jaworski EG. Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Commun. 1971;43:1274-1279. DOI: 10.1016/S0006-291X(71)80010-4.[PubMed][Crossref]
  • [21] Al Gharbi QA, Hipkin CR. Studies on nitrate reductase on British angiosperms. New Phytol. 1984;97:629-639. DOI: 10.1111/j.1469-8137.1984.tb03627.x.[Crossref]
  • [22] Krywult M, Klich M. Nitrate reductase activity as an indicator of nitrate fixation and assimilation by tropical forest species on St. Thomas Island. Fragm Flor Geobot. 2000;45 (1-2):213-220.
  • [23] Krywult M, Turunen M, Sutinen M-L, Derome K, Norokorpi Y. Nitrate reductase activity in some subarctic species and UV in influence in the foliage of Betula pendula Roth. seedlings. Sci Total Environ. 2002;284(1-3):149-153. DOI: 10.1016/S0048-9697(01)00875-0.[Crossref]
  • [24] Krywult M, Bielec D. Measurement of nitrate reductase activity in a field conditions - methodology. J Ecol Eng. 2013;32:115-121. DOI: 10.5604/2081139X.1031524.[Crossref]
  • [25] Keeney DR, Nelson DW. Nitrogen - inorganic forms. In: Page AL, editor. Methods of Soil Analysis, Part 2. Chemical and biological properties. Agronomy. 1982;9(2):643-698.
  • [26] Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, et al. Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nature, Climate Change. 2011;1(1):50-53. DOI: 10.1038/nclimate1060.[Crossref]
  • [27] Mahan JR, Oliver MJ, Sherman TD. Nitrate reductase activity during desiccation and rehydration of the desiccation-tolerant moss Tortula ruralis. Environ Exp Bot. 1998;39:67-76. DOI: 10.1016/S0098-8472(97)00026-9. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_cdem-2013-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.