PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1-2 | 19-29
Tytuł artykułu

Elemental composition of fly ash: a comparative study using nuclear and related analytical techniques / Skład pierwiastkowy popiołów lotnych: studium przypadku z wykorzystaniem metod nuklearnych i analitycznych

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epithermal neutron activation analysis along with ICP-OES, LA ICP-MS, and XRF were used to determine the elemental composition of coal fly ash from the Malta coal power station in the Mpumalanga province of South Africa. A total of 54 major, trace and rare earth elements were obtained by the four analytical techniques. The results were compared and the discrepancies discussed to show the merits and drawbacks of each of the techniques. It was shown that the elemental content of this particular coal fly ash are of the same order as the NIST standard reference material Coal Fly Ash 1633b.
PL
W celu określenia składu pierwiastkowego popiołów lotnych z elektrowni węglowej Malta w prowincji Mpumalanga w Republice Południowej Afryki wykorzystano epitermalną, neutronową analizę aktywacyjną oraz ICP-OES, LA ICP-MS i XRF. Za pomocą czterech techniki analitycznych oznaczono stężenia 54 głównych i śladowych pierwiastków oraz pierwiastków ziem rzadkich. Wyniki porównano, a także opisano różnice pokazujące zalety oraz wady każdej z wykorzystanych metod. Wykazano, że skład pierwiastkowy popiołu lotnego jest porównywalny ze składem standardowego materiału odniesienia NIST Węgiel Popiół Lotny 1633b.
Wydawca
Rocznik
Tom
18
Numer
1-2
Strony
19-29
Opis fizyczny
Daty
wydano
2013-12-01
online
2014-01-22
Twórcy
autor
  • Environmental and Nano-Sciences Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa , ceze@uwc.ac.za
  • Environmental and Nano-Sciences Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
  • Environmental and Nano-Sciences Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
  • Department of Neutron Activation Analysis and Applied Research, Division of Nuclear Physics, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
  • Environmental and Nano-Sciences Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
  • Department of Neutron Activation Analysis and Applied Research, Division of Nuclear Physics, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
  • Center of Applied Physics, Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia
Bibliografia
  • [1] Haynes RJ. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs. J Environ Management. 2009;90:43-53. DOI:10.1016/j.jenvman.2008.07.003.[WoS][Crossref]
  • [2] Fulekar M, Dave J. Disposal of fly ash-an environmental problem. Intern J Environ Studies. 1986;26:191-215. DOI: 10.1080/00207238608710257.[Crossref]
  • [3] Jankowski J, Ward C, French D, Groves S. Mobility of trace elements from selected Australian fly ashes and its potential impacts on aquatic ecosystems. Fuel. 2006;85:243-256. DOI: 10.1016/j.fuel.2005.05.028.[Crossref]
  • [4] Sushil S, Batra S. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 2006;85:2676-2679. DOI: 10.1016/j.fuel.2006.04.031.[Crossref]
  • [5] Gitari W, Petrik L, Etchebers O, Key Dm, Okujeni C. Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. Fuel. 2008;87:2450-2462. DOI: 10.1016/j.fuel.2008.03.018.[Crossref][WoS]
  • [6] Dellantonio A, Fitz W, Custovic H, Repmann F, Schneider B, Grünewald H, et al. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environ Pollut. 2008;153:677-686. DOI: 10.1016/j.envpol.2007.08.032.[PubMed][Crossref][WoS]
  • [7] Senapati M. Fly ash from thermal power plants - waste management and overview. Current Science. 2011;100(12):1791-1974.
  • [8] Neupane G, Donahoe R. Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 2013;104:758-770. DOI: 10.1016/j.fuel.2012.06.013.[Crossref][WoS]
  • [9] Adriano DC, Page PL, Elseewi AA, Straughan I. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. J Environ Qual. 1980;9(3):333-344. DOI: 10.2134/jeq1980.00472425000900030002x.[Crossref]
  • [10] Asokana P, Saxena M, Asolekar S. Coal combustion residues - environmental implications and recycling potentials. Resources, Conservation and Recycling. 2005;43:239-262. DOI: 10.1016/j.resconrec.2004.06.003.[Crossref]
  • [11] Dutta B, Khanra S, Mallick D. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel. 2009;88:1314-1323. DOI: 10.1016/j.fuel.2009.01.005.[Crossref][WoS]
  • [12] Izquierdo M, Querol X. Leaching behaviour of elements from coal combustion fly ash: An overview. International J Coal Geol. 2012;94:54-66. DOI: 10.1016/j.coal.2011.10.006.[Crossref]
  • [13] Blissett R, Rowson N. A review of the multi-component utilisation of coal fly ash. Fuel. 2012;97:1-23. DOI: doi.org/10.1016/j.fuel.2012.03.024.[WoS]
  • [14] Vassilev S, Vassileva C. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals. Fuel Processing Technol. 2006;87:1095-1116. DOI: 10.1016/j.fuproc.2006.08.006.[Crossref]
  • [15] Smolka-Danielowska D. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region. J Environ Radioactiv. 2010;101:965-968. DOI: 10.1016/j.jenvrad.2010.07.001. [Crossref][WoS]
  • [16] Kashiwakura S, Kumagai Y, Kubo H, Wagatsuma K. Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent. Open J Phys Chem. 2013; 3:69-75. DOI: 10.4236/ojpc.2013.32009.[Crossref]
  • [17] Davison R, Natusch D, Wallace J. Trace elements in fly ash dependence of concentration on particle size. Environ Sci Technol. 1974;13:1107-1113. DOI: 10.1021/es60098a003.[Crossref]
  • [18] McNally D, Crowley-Parmentier J, Whitman B. Trace metal leaching and bioavailability of coal-generated fly ash. Int Res J Environ Sci. 2012;1(5):76-80.
  • [19] Parami V, Sahoo S, Yonehara H, Takeda S, Quirit L. Accurate determination of naturally occurring radionuclides in Philippine coal-fired thermal power plants using inductively coupled plasma mass spectrometry and γ-spectroscopy. Microchem J. 2010;95:181-185. DOI: 10.1016/j.microc.2009.11.008.[Crossref][WoS]
  • [20] Dogan O, Symsek Ö, Nuhoglu Y, Kopya M, Ertugrul M. Geochemistry, soil, and environmental sciences x-ray fluorescence spectrometry analysis of trace elements in fly ash samples of Kemerköy thermal power plants. J Trace Microprobe Techniques. 2001;19(2):289-295. DOI: 10.1081/TMA-100002218.[Crossref]
  • [21] Spears D. The use of laser ablation inductively coupled plasma-mass spectrometry (LA ICP-MS) for the analysis of fly ash. Fuel. 2004;83(13):1765-1770. DOI: 10.1016/j.fuel.2004.02.018.[Crossref]
  • [22] Rowe JJ, Steinnes E. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons. J Radioanal Chem. 1977;37:849-856. DOI: 10.1007/BF02519396.[Crossref]
  • [23] Hansen Y, Notten P, Petrie G. A life cycle impact assessment indicator for ash management in coal-based power generation. The Journal of The South African Institute of Mining and Metallurgy. 2002, July/August, 299-306.
  • [24] Petrik L, White R, Klink M, Somerset V, Burgers C, Frey M. Utilisation of South African fly ash to treat acid mine drainage, and production of high quality zeolites from the residual solids. In: Proceedings of the 2003 International Ash Utilisation Symposium. University of Kentucky, USA, Paper no. 61. http://www.flyash.info.
  • [25] Dmitriev AY, Pavlov SS. Automation of quantitative determination of elemental content of samples by neutron activation analysis at the reactor IBR-2 in FLNP JINR. Physics of Particles and Nuclei Letters. 2013;10(178):58-64. DOI: 10.1134/S1547477113010056.[Crossref]
  • [26] National Institute of Standards and Technology (NIST). Certificate of Analysis, Standard Reference Material, 1633. 2008.
  • [27] Jackson BP, Miller WP. Arsenic and selenium speciation in coal fly ash extracts by ion chromatographyinductively coupled plasma mass spectrometry. J Analyt Atomic Spectrometry. 1998;13:1107-1112. DOI: 10.1039/A806159I.[Crossref]
  • [28] www.marscigrp.org/elconv.html.
  • [29] Bode P, Greenberg RR, De Nadai Fernandes EA. Neutron activation analysis: a primary (ratio) method to determine SI-traceable values of element content in complex samples. Chimia. 2009;63(10):678-680. DOI: http://dx.doi.org/10.2533/chimia.2009.678.[WoS]
  • [30] ASTM, Standard specification for fly ash and raw or calcined natural pozzolan for use as mineral admixture in Portland cement concrete. Pennsylvania: American Society for Testing and Materials; 1994.
  • [31] McCarthy GJ. X-ray powder diffraction for studying the mineralogy of fly ash. MRS Proceedings, 1987;113:75-86. DOI: 10.1557/PROC-113-75.[Crossref]
  • [32] Hou X, Jones B. Inductively Coupled Plasma/Optical Emission Spectrometry. In: Encyclopedia of Analytical Chemistry. Meyers RA, editor. Chichester: John Wiley & Sons Ltd; 2000; 9468-9485.
  • [33] Chen M, Ma L. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J. 2001;65:491-499. DOI: 10.2136/sssaj2001.652491x.[Crossref]
  • [34] Enamorado-Báez S, Abril L, Gómez-Guzmán J. Determination of 25 trace element concentrations in biological reference materials by icp-ms following different microwave-assisted acid digestion methods based on scaling masses of digested samples. ISRN Analyt Chem. 2013:1-14. DOI: 10.1155/2013/851713.[Crossref]
  • [35] Hannaker P, Haukka M, Sen S. Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials. Chem Geol. 1984;42:319-324.[Crossref]
  • [36] Brown R, Milton M. Analytical techniques for trace element analysis: an overview. Trends in Analyt Chem. 2005;24(3):266-274. DOI: 10.1016/j.trac.2004.11.010.[Crossref]
  • [37] Zhang Y, Jiang Z, He M, Hu B. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environ Pollut. 2007;148:459-467. DOI: 10.1016/j.envpol.2006.12.004.[Crossref][WoS]
  • [38] Iwashita A, Nakajima T, Takanashi H, Akira Ohki A, Yoshio Fujita Y, Yamashita T. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES. Fuel. 2005;85:257-263. DOI:10.1016/j.fuel.2005.04.034. [Crossref]
  • [39] Misra N. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials. Pramana J Phys. 2011;76(2):201-212. DOI: 10.1007/s12043-011-0046-y. [WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_cdem-2013-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.