Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 1-2 | 97-112
Tytuł artykułu

„Good” and „Bad” Ozone - Evaluation on the Basis of Plant Reaction to Ozone / „Dobry” I „Zły” Ozon - Ocena Na Podstawie Reakcji Roślin Na Ozon

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ozone is a natural and artificial chemical compound of Earth’s atmosphere. O3 is an absorbent of ultraviolet and infrared radiation and has strong oxidative properties. In the stratosphere the ozone layer protects the planet’s surface from dangerous UV radiation, its indirect effect on plant organisms is positive so stratospheric ozone can be called “good” ozone. The depletion of the ozone layer, as a result of atmosphere pollution, described as an ozone “hole” is causing UVB radiation enhanced level on Earth’s surface. The genetic, cytological, physiological and morphological reaction of prolonged UVB exposure in plants is twofold: it damages plants and simultaneously plants protect themselves and repair their injuries. The ozone in the troposphere originates from natural sources and is also a secondary pollutant, formed in photochemical reactions, leading to “smog” and ozone “spots” occurrence. As a strong oxidant, O3 is directly toxic to plants and can be recognized as “bad” ozone. Ozone is also classified as a “greenhouse” gas, participating in global warming. It is difficult to value the impact of O3 as a “greenhouse” gas on plants. The combined effect of O3 changes in the stratosphere and troposphere on plants can be estimated as loss in crop yield and in productivity of natural ecosystems
PL
Ozon O3 jest naturalnym, ale również sztucznym składnikiem chemicznym atmosfery ziemskiej. Jest absorbentem promieniowania ultrafioletowego i podczerwonego oraz ma silne właściwości utleniające. W stratosferze warstwa ozonowa chroni powierzchnię planety przed niebezpiecznym promieniowaniem UV, pośredni wpływ O3 stratosferycznego na rośliny jest więc pozytywny i O3 stratosferyczny można nazwać „dobrym” ozonem. Zubożenie warstwy ozonowej wynikające z zanieczyszczenia atmosfery, a opisywane jako „dziura” ozonowa, jest przyczyną zwiększonego promieniowanie UVB na poziomie powierzchni Ziemi. Genetyczne, cytologiczne, fizjologiczne i morfologiczne reakcje roślin na długotrwałe działanie nadmiaru UVB są dwojakie: niszczą rośliny, a jednocześnie rośliny chronią siebie i naprawiają swoje uszkodzenia ozonowe. Ozon w troposferze pochodzi ze źródeł naturalnych, a także jest wtórnym zanieczyszczeniem, które powstało w reakcjach fotochemicznych, co prowadzi do przypadków „smogu” i „plam” ozonowych. Jako silny utleniacz O3 jest bezpośrednio toksyczny dla roślin. O3 może powodować specyficzne ozonowe uszkodzenia roślin i zostać uznany za „zły” ozon. Ozon jest także sklasyfikowany jako jeden z gazów „cieplarnianych”, biorąc udział w globalnym ociepleniu. Trudno jest jednak ocenić wpływ O3 jako jednego z gazów „cieplarnianych” na rośliny Łączny wpływ zmian O3 w stratosferze i troposferze na rośliny można ocenić jako utratę plonów i zmniejszenie produktywności naturalnych ekosystemów
Wydawca

Rocznik
Tom
17
Numer
1-2
Strony
97-112
Opis fizyczny
Daty
wydano
2012-12-01
online
2013-01-17
Twórcy
  • Department of Plant Physiology, Warsaw University of Plant Science, ul. Nowoursynowska 159, 02-776 Warszawa, Poland, anna_dzierzynska@sggw.pl
Bibliografia
  • [1] Sivasakthivel T, Siva Kumar Reddy KK. Ozone layer depletion and its effects: a review. Int J Environ Sci Dev. 2011;2(1):30-37.
  • [2] Rowland FS. Stratospheric ozone depletion. Phil Trans R Soc B. 2006;361(1469):769-790. DOI: 10.1098/rstb.2005.1783.[Crossref]
  • [3] Andrews JE, Brimblecombe P, Jickells TD, Liss PS. Wprowadzenie do chemii środowiska. Warszawa; Wyd Nauk-Tech. 1999.
  • [4] Makles Z, Galwas-Zakrzewska M. Ozon - bezpieczeństwo ludzi i środowiska. Bezpieczeństwo Pracy. 2004;6:25-28.
  • [5] Mackenzie A, Ball AS, Virdee SR. Instant Notes in Ecology. BIOS Scientific Publishers Ltd.1998:291-294.
  • [6] Robinson SA, Wilson SR. Environmental effects of ozone depletion and its interactions with climate change: 2010 Assessment Executive Summary. Photochem Photobiol Sci. 2011;10:178-181. DOI: 10.1039/C0PP90043E.[Crossref]
  • [7] Hollòsy F. Effects of ultraviolet radiation on plant cells. Micron. 2002;33:179-197. DOI: 10.1016/S0968-4328(01)00011-7.[PubMed][Crossref]
  • [8] Reddy KR, Kakani VG, Zhao D, et al. Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. Agr Forest Meteorol. 2003;120:249-265. DOI: 10.1016/j.agrformet.2003.08.029.[Crossref]
  • [9] Tong NYO, Leung DYC, Liu CH. A review on ozone evolution and its relationship with boundary layer characteristics in urban environments. Water Air Soil Pollut. 2011;214:13-36. DOI: 10.1007/s11270-010-0438-5.[Crossref]
  • [10] Cristofanelli P, Bonasoni P, Collins W, et al. Stratosphere-to-troposphere transport: A model and method evaluation. J Geophys Res. 2003;108(12):8525-8548. DOI:10.1029/2002JD002600.[Crossref]
  • [11] Black VJ, Black CR, Roberts JA, Steward CA. Impact of ozone on the reproductive development of plants. New Phytol. 2000;147:421-447. DOI: 10.1046/j.1469-8137.2000.00721.x.[Crossref]
  • [12] Murkowski A. Oddziaływanie czynników stresowych na luminiscencję chlorofilu w aparacie fotosyntetycznym roślin uprawnych - monografia. Lublin: Acta Agrophysica (PAN); 2002.
  • [13] Schmieman EC, Van Ierland EC, Hordijk L. Dynamic efficiency with multipollutants and multi-targets: The case of acidification and tropospheric ozone formation in Europe. Environ Resour Econ. 2002;23:133-148. DOI: 10.1023/A:1021234423189.[Crossref]
  • [14] Ashmore MR, Büker P, Emberson LD, et al. Modelling stomatal ozone flux and deposition to grassland communities across Europe. Environ Pollut. 2007;146:659-670. DOI: 10.1016/j.envpol.2006.06.021.[Crossref]
  • [15] Mauzerall DL, Wang X. Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling Science and Standard Setting in the United States, Europe, and Asia. Annu Rev Energ Env. 2001;26:237-68. DOI: 10.1146/annurev.energy.26.1.237.[Crossref]
  • [16] Ashmore MR. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005;28:949-964. DOI: 10.1111/j.1365-3040.2005.01341.x.[Crossref]
  • [17] Ludwikow A, Sadowski J. Gene networks in plant ozone stress response and tolerance. J Integr Plant Biol. 2008;50(10):1256-1267. DOI: 10.1111/j.1744-7909.2008.00738.x.[PubMed][Crossref]
  • [18] Tamaoki M. The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal Behav. 2008;3(3):166-174. DOI: 10.4161/psb.3.3.5538.[PubMed][Crossref]
  • [19] Fares S, Goldstein A, Loreto F. Determinants of ozone fluxes and metrics for ozone risk assessment in plants. J Exp Bot. 2010;61(3):629-633. DOI: 10.1093/jxb/erp336.[Crossref][PubMed]
  • [20] Kerstiens G, Lendzian KJ. Interactions between ozone and plant cuticules.1. Ozone deposition and permeability. New Phytol. 1989;112:13-19. DOI: 10.1111/j.1469-8137.1989.tb00303.x.[Crossref]
  • [21] Kivimäenpää M, Selledén G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics. Environ Pollut. 2005;137:466-475. DOI: 10.1016/j.envpol.2005.01.033.[Crossref]
  • [22] Paoletti E, Grulke NE. Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut. 2005;137:483-493. DOI:10.1016/j.envpol.2005.01.035.[Crossref]
  • [23] Chen Z, Gallie DR. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 2005;138:1673-1689. DOI: 0.1104/pp.105.062000.
  • [24] Thirupathi K, Jun-Cheol M, Changsoo K, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci. 2011;5:709-725.
  • [25] Roshchina VV, Roshchina VD. Ozone and Plant Cell. Kluwer Academic Publishers, United States; 2003.
  • [26] Percy KE, Ferretti M. Air pollution and forest health: toward new monitoring concepts. Environ Pollut. 2004;130:113-126. DOI: 10.1016/j.envpol.2003.10.034.[Crossref]
  • [27] Fiscus EL, Booker FL, Burkey KO. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 2005;28:997-1011. DOI:10.1111/j.1365-3040.2005.01349.x.[Crossref]
  • [28] Buchanan B, Gruissem W, Jones R. Biochemistry & Molecular Biology of Plants. ASPP. 2000:1158.
  • [29] Beauchamp J, Wisthaler A, Hansel A, et al. Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ. 2005;28(10):1334-1343. DOI:10.1111/j.1365-3040.2005.01383.x.[Crossref]
  • [30] Augustaitis A, Bytnerowicz A. Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: A Lithuanian case study. Environ Pollut. 2008;155:436-445. DOI: 10.1016/j.envpol.2008.01.042.[Crossref]
  • [31] Hayes F, Jones MLM, Mills G, Ashmore M. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ Pollut. 2007;146:754-762. DOI:10.1016/j.envpol.2006.06.011.[Crossref]
  • [32] Fuhrer J, Booker F. Ecological issues related to ozone: agricultural issues. Environ Int. 2003;29(2-3):141-154. DOI: 10.1016/S0160-4120(02)00157-5.[PubMed][Crossref]
  • [33] Hoshika Y, Omasa K, Paoletti E. Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environ Exp Bot. 2011 (in press). DOI: 10.1016/j.envexpbot.2011.12.004.[Crossref]
  • [34] Ainsworth EA, Yendrek CR, Sitch S, et al. The effects of tropospheric ozone on net primary productivity and implications for climate change. Ann Rev Plant Biol. 2012;63:637-661. DOI: 10.1146/annurev-arplant-042110-103829.[Crossref]
  • [35] Leisner CP, Ainsworth EA. Quantifying the effects of ozone on plant reproductive growth and development. Global Change Biol. 2012;18(2):606-616. DOI: 10.1111/j.1365-2486.2011.02535.x.[Crossref]
  • [36] Matoušková L, Novotný R, Hůnová I, Buriánek V. Visible foliar injury as a tool for the assessment of surface ozone impact on native vegetation: a case study from the Jizerské hory Mts. J Forest Sci. 2010;56(4):177-182.
  • [37] Bussotti F, Agati G, Desotgiu R, et al. Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysis. New Phytol. 2005;166(3):941-955. DOI: 10.1111/j.1469-8137.2005.01385.x.[Crossref][PubMed]
  • [38] Gravano E, Bussotti F, Strasser RJ, et al. Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics. Physiol Plant. 2004;121: 620-633. DOI: 10.1111/j.1399-3054.2004.00363.x.[Crossref]
  • [39] Klumpp A, Ansel W, Klumpp G, et al. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution. Atmos Environ. 2006;40(38):7437-7448. DOI: 10.1016/j.atmosenv.2006.07.001.[Crossref]
  • [40] Griffiths H. Effects of air pollution on agricultural crops. Factsheet OMAFRA 2003; 85-002. http://www.omafra.gov.on.ca/english/contact.html.
  • [41] Comis D. Breeding plants for a high-ozone world. Agric Res Service, USDA News and Events 2011:14-16. http://www.ars.usda.gov/is/AR/2011/jul11/plants0711.htm.
  • [42] Noormets A, Krishna G, Podila Z, Karnosky D. Rapid response of antioxidant enzymes to O3 induced oxidative stress in Populus tremuloides clones varying in O3 tolerance. Forest Genet. 2000;7(4):335-338.
  • [43] Olbrich M, Gerstner E, Welzl G, Winkler JB, Ernst D. Transcript responses in leaves of ozone-treated beech saplings seasons at an outdoor free air model fumigation site over two growing seasons. Plant Soil. 2009;323:61-74. DOI:10.1007/s11104-009-0129-4.[Crossref]
  • [44] Bhattacharjee S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr Sci. 2005;89(7):1113-1121.
  • [45] Ulm R, Nagy F. Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol. 2005;8:477-482. DOI:10.1016/j.pbi.2005.07.004.[Crossref][PubMed]
  • [46] Rizzini L, Favory JJ, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8. Protein Sci. 2011;332(6025):103-106. DOI:10.1126/science.1200660.[Crossref]
  • [47] Mpoloka SM. Effects of prolonged UV-B exposure in plants. Afr J Biotechnol. 2008;7(25):4874-4883.
  • [48] Kakani VG, Reddy KR, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation: a review. Agr Forest Meteorol. 2003;120:191-218. DOI:10.1016/j.agrformet.2003.08.015.[Crossref]
  • [49] Ishibashi T, Kimura S, Furukawa T, Sakaguchi K. DNA repair mechanisms in UV-B tolerant plants - review. Japan Agric Res Quar. 2006;40(2):107-113.
  • [50] Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing Damage and Protection. Plant Physiol. 2003;133:1420-1428.
  • [51] Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha PR. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair- review article. J Nucleic Acids 2010: Article ID 592980, 32 pages. DOI:10.4061/2010/592980.[Crossref]
  • [52] Ghetti F, Checcucci G, Bornman JF, Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models: Proceedings of the NATO Advanced Study Institute on Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models, Pisa, June 2001, Italy: Springer; 2005.
  • [53] Brosche M, Strid Å. Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant. 2003;117:1-10. DOI:10.1034/j.1399-3054.2003.1170101.x.[Crossref]
  • [54] Hideg É, Rosenqvist E, Váradi G, Bornman J, Vincze É. A comparison of UV-B induced stress responses in three barley cultivars. Funct Plant Biol. 2006;33(1):77-90. DOI:10.1071/FP05085.[Crossref]
  • [55] Kakanii VG,. Reddy KR, Zhao D, Mohamed AR. Effects of Ultraviolet-B Radiation on Cotton (Gossypiumhirsutum L.) Morphology and Anatomy. Ann Bot. 2003;91(7):817-826. DOI: 10.1093/aob/mcg086.[Crossref]
  • [56] Zuk-Golaszewska K, Upadhyaya MK, Golaszewski J. The effect of UV-B radiation on plant growth and development. Plant Soil Environ. 2003;49(3):135-140.
  • [57] Minorsky PV. The hot and the classic. Plant Physiol. 2004;134:16-17. DOI:10.1104/pp.900100.[Crossref]
  • [58] Zheng Y, Shimizu H, Barnes JD. Limitations to CO2 assimilation in ozone-exposed leaves of Plantago major. New Phytol. 2002;155:67-78. DOI: 10.1046/j.1469-8137.2002.00446.x.[Crossref]
  • [59] Zepp RG, Erickson III DJ, Paul ND, Sulzberger B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci. 2011;10:261-279. DOI: 10.1039/C0PP90037K.[Crossref]
  • [60] Allen DJ, Nogués S, Baker NR. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot. 1998;49(328):1775-1788. DOI: 10.1093/jxb/49.328.1775.[Crossref]
  • [61] Aphalo PJ. Do current levels of UV-B radiation affect vegetation? The importance of longterm experiments. New Phytol. 2003;160:273-280. DOI: 10.1046/j.1469-8137.2003.00905.x.[Crossref]
  • [62] Sinha RP, Häder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1:225-236. DOI: 10.1039/b201230h.[PubMed][Crossref]
  • [63] Krupa S, Jäger HJ. Adverse effects of elevated levels of ultraviolet (UV)-B radiation and ozone (O3) on crop growth and productivity. In: Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes. Rome, Italy: FAO; 1996.
  • [64] Hase Y, Trung KH, Matsunga T, Tanaka A. A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J. 2006;46(2):317-326. DOI: 10.1111/j.1365-313X.2006.02696.x.[Crossref]
  • [65] Li Y, Fan J, Ma H, Shen F, Zhang G, Wang J, et al. Elevated level of polysaccharides in a high level UV-B tolerant cell line of Bupleurum scorzonerifolium Willd. African J Biotechnol. 2011;10(29):5578-5586.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_cdem-2013-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.