Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 1 | 2 | 344-354
Tytuł artykułu

A thermodynamic approach to mechanical stability of nanosized particles

Treść / Zawartość
Warianty tytułu
Języki publikacji
Thermodynamic stability conditions for nanoparticles (resulting from non-negativity of the second variation of the free energy) have been analyzed for two cases: (i) a nonvolatile nanosized particle with the size-dependent surface tension; (ii) the limiting case of larger objects when the surface tension takes its macroscopic value. It has been shown that the mechanical stability of a nanoparticle, i.e. its stability relative to the volume fluctuations, is defined by an interplay between the excess (“surface”) free energy and the volumetric elastic energy. According to the results obtained, noble gas clusters and metal nanoparticles satisfy the mechanical stability condition. At the same time, water nanodrops, as well as nanoparticles presented by nonpolar organic molecules, correspond to the stability limit. Among the investigated systems, the stability condition is not carried out for n-Pentane clusters.

Opis fizyczny
  • [1] J. Neumann: Theory of self-reproducing automata, University of Illinois Press, Urbana and London, 1966.
  • [2] R.P. Feynman: “There's Plenty Room at the Bottom”, Engineering Science, Vol. 23, (1960), pp. 22–32.
  • [3] A.V. Malakhovskii: “Ejection of cluster ions as a result of electron impact ionization of argon”, Chemical Physics, Vol. 270, (2001), pp. 471–481.[Crossref]
  • [4] V.M. Samsonov, N.Yu. Sdobnyakov, A.N. Bazulev: “On thermodynamic stability conditions for nanosized particles”, Surface Science, (2003), (in print).
  • [5] A.I. Rusanov: Phasengleichgewichte und Grenzflaechen erscheinungen. Academie-Verlag, Berlin, 1978.
  • [6] V.M. Samsonov: “Conditions for applicability of a thermodynamic description of highly disperse and microheterogeneous systems”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1863–1867.
  • [7] A.N. Bazulev, V.M. Samsonov, N.Yu. Sdobnyakov: “Thermodynamic perturbation theory calculations of interpose tension in small objects”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1872–1876.
  • [8] V.M. Samsonov, A.N. Bazulev, N.Yu. Sdobnyakov: “On applicability of the Gibbs thermodynamic to nanoparticles”, Central European Journal of Physics (2003), (in print).
  • [9] J.W. Gibbs: The Collected Works. V. 1, Longmans, Green and Co., New York-London-Toronto, 1928.
  • [10] M.D. Croucher; “A semi-empirical expression for the surface tension of polymer melts”, Macromolecular Chemistry Rapid Communication, Vol. 2, (1981), pp. 199–205.[Crossref]
  • [11] E.N. Vitol: “Opredelenie zavisimosty poverkhnostnogo natyazheniya matallov ot krivizny poverkhnosti razdela faz (The definition of the surface tension curvature dependence for the metals)”, Kolloidnii Zhurnal, Vol. 54, (1992), pp. 21–22.
  • [12] Chemist's Handbook. V.1, Khimiya, Moscow-Leningrad, 1971, pp. 558–563, pp. 1006–1023.
  • [13] Physical Quantities. Handbook, Energoatomizdat, Moscow, 1991, pp. 1232.
  • [14] Ch. Kittel: Introduction to Solid State Physics, John Willey and Sons Inc., New York-London-Sydney-Toronto, 1978.
  • [15] D.J. Wales and R.S. Berry: “Freezing, malting, spinodals, and clusters”, The Journal of Chemical Physics, Vol. 92, (1990), pp. 4473–4482.[Crossref]
  • [16] M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland: “Irregular variations in the melting point of size-selected atomic clusters”, Nature, Vol. 393, (1998), pp. 238–240.[Crossref]
  • [17] B.O. Hall, B. Flueli, R. Monot, J.-P. Borel: “Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction”, Physical Review B, Vol. 43, (1991), pp. 3906–3917.[Crossref]
  • [18] V.M. Samsonov, S.D. Murav'ev, A.N. Bazulev: “Surface characteristics, structure, and stability of nanosized particles”, Russian Journal of Physical Chemistry, Vol. 74 (2000), pp. 1791–1795.
  • [19] Kh.B. Khokonov: “The measurement methods of the surface energy and tension of metals and alloys in the solid state”, Surface phenomena in melts and solid phases, (1974), pp. 190–261.
  • [20] T.L. Hill: Statistical mechanics, Mr Craw-Hill Book Company, New York-Toronto-London, 1956.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.