PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2003 | 1 | 2 | 246-257
Tytuł artykułu

Higher harmonics in the voltage on a superconducting wire carrying AC electrical current

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of determining the harmonic content in the voltage that appears on a superconducting wire carrying cosine-like AC current was resolved theoretically, using two approaches. First, the Fourier components of the voltage spectrum were found by numerical integration. Importance of individual terms was established, leading to two conclusions: a) it is the cosine component of the 3rd harmonic that represents the bulk of harmonic distortion, b) for the practical purposes it is sufficient to consider higher harmonics with n ≤ 7. Then, the analytical formulas were derived. While for the sine components a general expression containing an infinite series was found, closed-form formulas were derived for the cosine components of the harmonics 1, 3, 5, 7. Consequences of the results to the experimental technique used to study the AC transport properties of superconductors are discussed.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
2
Strony
246-257
Opis fizyczny
Daty
wydano
2003-06-01
online
2003-06-01
Twórcy
  • Istituto Nazionale per la Fisica della Materia, Dipartimento di Scienza dei Materiali dell'Università Statale di Milano-Bicocca, INFM, Milano, Italy
  • Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cest 9, Bratislava, Slovakia
Bibliografia
  • [1] M. Polák, I. Hlásnik, S. Fukui, N. Ikeda, O. Tsukamoto: “Self-field effect and current-voltage characteristics of a.c. superconductors”, Cryogenics, Vol. 34, (1994) pp. 315. http://dx.doi.org/10.1016/0011-2275(94)90112-0[Crossref]
  • [2] S.P. Ashworth: “Measurements of AC losses due to transport current in bismuth superconductors”, Physica, Vol. C 229, (1994), pp. 355.
  • [3] A.N. Ulyanov: “Transport of alternating current and direct current by hard superconductors. critical and resistive state”, J. Appl. Phys., Vol. 85, (1999), pp. 3726. http://dx.doi.org/10.1063/1.369739[Crossref]
  • [4] T. Yamao, M. Hagiwara, K. Koyama, M. Matsuura: “Intergrain ordering of a superconductive ceramic of YBa2Cu4O8 at zero external magnetic field”, J. Phys. Soc. Jpn., Vol. 68., (1999), pp. 871. http://dx.doi.org/10.1143/JPSJ.68.871[Crossref]
  • [5] A.M. Grishin, V.N. Korenivski, K.V. Rao, A.N. Ulyanov: “High-frequency harmonic generation by Bi2Sr2Ca2Cu3Oy ceramic carrying alternating transport current”, Appl. Phys. Lett. Vol. 65, (1994), pp. 487. http://dx.doi.org/10.1063/1.112346[Crossref]
  • [6] L. Ji, H. Sohn, G.C. Spalding, C.J. Lobb M. Tinkham: “Critical-state model for harmonic generation in high-temperature superconductors”, Phys. Rev., Vol. B 40, (1989), pp. 10936. http://dx.doi.org/10.1103/PhysRevB.40.10936[Crossref]
  • [7] T. Ishida and R.B. Goldfarb: “Fundamental and harmonic susceptibilities of YBa2Cu3O7-σ”, Phys. Rev., Vol. B 41, (1990), pp. 8937. http://dx.doi.org/10.1103/PhysRevB.41.8937[Crossref]
  • [8] P. Fabbricatore, S. Farinon, G. Gemme, R. Musenich, R. Parodi, B. Zhang: “Effects of fluxon dynamics on higher harmonics of ac susceptibility in type-II superconductors”, Phys. Rev., Vol. B 50, (1994), pp. 3189. http://dx.doi.org/10.1103/PhysRevB.50.3189[Crossref]
  • [9] M. Polichetti, M.G. Adesso, T. Di Matteo, A. Vecchione, S. Pace: “Detection of flux creep regime in the AC susceptibility curves by using higher harmonic response”, Physica, Vol. C 332, (2000), pp. 378.
  • [10] A. Crisan, A. Iyo, Y. Tanaka, M. Hirai, M. Tokumoto, H. Ihara: “Superconducting properties from AC susceptibility and harmonic generation in CuBa2Ca3Cu4Oy”, Physica, Vol. C 353, (2001), pp. 227.
  • [11] F. Gömöry and R. Tebano: “Low frequency impedance of a round cylindrical wire”, Physica, Vol. C 310, (1998), pp. 116.
  • [12] C.P. Bean: “Magnetization of hard superconductors”, Rev. Mod. Phys., Vol. 36, (1964), pp. 31. http://dx.doi.org/10.1103/RevModPhys.36.31[Crossref]
  • [13] W.T. Norris: “Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets”, J. Phys., Vol. D 3, (1970), pp. 489.
  • [14] E. Martinez, T.J. Hughes, Y. Yang, C. Beduz, L. A. Angurel: “Measurement of AC losses in textured polycrystalline Bi-2212 thin rods”, IEEE Trans. Appl. Superconductivity, Vol. 9, (1999), pp. 805. http://dx.doi.org/10.1109/77.783419[Crossref]
  • [15] K.-H. Müller and K.E. Leslie: “Self-field AC loss of Bi-2223 superconducting tapes”, IEEE Trans. Appl. Superconductivity, Vol. 7, (1997), pp. 306. http://dx.doi.org/10.1109/77.614491[Crossref]
  • [16] R. Tebano, A. Melini, R. Mele, G. Coletta: “Edddy current loss in Ag-sheathed BSCCO tapes in the AC transport regime”, IEEE Trans. Appl. Superconductivity, Vol. 11, (2001), pp. 2757. http://dx.doi.org/10.1109/77.919634[Crossref]
  • [17] F. Gömöry, R. Tebano, J. Souc and S. Farinon: “Generation of Higher Harmonics in Voltage on Superconducting Wire Carrying Cosine-like AC Current”, IEEE Trans. Appl. Superconductivity, Vol. 13, (2003), accepted for publication. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02476295
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.