Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 3 | 2 | 279-287
Tytuł artykułu

Study of catalase immobilized on a silicate matrix for non-aqueous biocatalysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (KM), the apparent maximum rate of enzymatic reaction (Vmaxapp), the first order specific rate constants (ksp), the energy of activation (Ea) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.

Opis fizyczny
  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria,
  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria
  • [1] S. Akgol and E. Dinckaya: “A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe”, Talanta, Vol. 48, (1999), pp. 363–367.[Crossref]
  • [2] “Amperometric biosensors” In: E. Turner, I. Karube and D. Wilson (Eds.): Biosensors-fundamentals and applications, Mir, Moscow, 1992 (in Russian).
  • [3] T. Tatsuma, T. Watanabe and S. Tatsuma: “Substrate-purging enzyme electrodes. Peroxidase/catalase electrodes for H2O2 with an improved upper-sensing limit”, Anal. Chem., Vol. 66, (1994), pp. 290–294.[Crossref]
  • [4] E. Akyilmaz and E. Dinckaya: “Development of a catalase based biosensor for alcohol determination in beer samples”, Talanta, Vol. 61, (2003), pp. 113–118.[Crossref]
  • [5] V.C. Gekas: “Artificial membranes as carriers for the immobilization of biocatalysts”, Enzyme Microb. Technol., Vol. 8, (1986), pp. 450–460.[Crossref]
  • [6] S. Akgol, Y. Kacar, S. Ozkara, H. Yavuz, A. Denizli and M.Y. Arica: “Immobilization of catalase via adsorption onto L-histidine grafted pHEMA based membrane”., J. Mol. Catalysis B-Enzymatic, Vol. 15, (2001), pp. 197–206.[Crossref]
  • [7] U. Chatterjee, A. Kumar and G.G. Sanwal: “Goat liver catalase immobilized on various solid supports”, J. Ferment. Bioeng., Vol. 70, (1990), pp. 423–430.[Crossref]
  • [8] E. Horozova, N. Dimcheva and Z. Jordanova: “Adsorption, catalytic and electrochemical activity of catalase immobilized on carbon materials”, Z. Naturforsch., Vol. 52C, (1997), pp. 632–644.
  • [9] A. Paar, S. Costa, T. Tzanov, M. Gudelj, K.-H. Robra, A. Cavaco-Paulo and G.M. Gubitz: “Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents”, J. Biotechnol., Vol. 89, (2001), pp. 147–153.[Crossref]
  • [10] E. Magner and A.M. Klibanov: “The oxidation of chiral alcohols catalyzed by catalase in organic solvents”, Biotechnol. Bioeng., Vol. 46, (1995), pp. 175–179.[Crossref]
  • [11] L. Campanella, G. Favero, M.P. Sammartino and M. Tomassetti: “Further Development of catalase, tyrosinase and glucose oxidase based organic phase enzyme electrode response as a function of organic solvent properties”, Talanta, Vol. 46, (1998), pp. 595–606.[Crossref]
  • [12] L. Campanella, U. Martini, M.P. Sammartino and M. Tomassetti: “The Effect of Organic Solvent on a Catalase Enzyme Sensor for Monitoring Hydrogen Peroxide in Nonaqueous Solutions”, Electroanalysis, Vol. 8, (1996), pp. 1150–1154.[Crossref]
  • [13] L. Campanella, M.P. Sammartino, M. Tomassetti and S. Zannella: “Hydroperoxide determination by a catalase OPEE: application to the study of extra virgin olive oil rancidification process”, Sensors and Actuators B, Vol. 76, (2001), pp. 158–165.[Crossref]
  • [14] J. Wang, G. Rivas and J. Liu: “A catalase electrode for organic-phase enzymatic assays”, Anal. Lett., Vol. 28, (1995), pp. 2287–2295. [Crossref]
  • [15] E. Horozova, N. Dimcheva and Z. Jordanova: “Study of catalase electrode for organic peroxides assays”, Bioelectrochemistry, Vol. 58, (2002), pp. 181–187.[Crossref]
  • [16] N. Dimcheva, E. Horozova and T. Shougova: “The enzyme source effect on the performance of a catalase organic phase enzyme electrode”, Monats. fur Chemie, Vol. 136, (2005), pp. 147–152.[Crossref]
  • [17] N. Dimcheva, E. Horozova and Z. Jordanova: “Decomposition of Cumene Hydroperoxide in Acetonitrile Catalyzed by Immobilized Catalase”, Bulgarian Chemistry and Industry, Vol. 75, (2004), pp. 1–7.
  • [18] E. Horozova, N. Dimcheva and Z. Jordanova: “Catalytic decomposition of 3-chloroperoxybenzoic acid by immobilized catalase in a non-aqueous medium”, Z. Naturforsch., Vol. 55C, (2000), pp. 55–59.
  • [19] E. Horozova, N. Dimcheva and Z. Jordanova: “Enzyme-catalyzed decomposition of dibenzoyl peroxide in organic solvents”, Z. Naturforsch, Vol. 56C, (2001), pp. 553–558.
  • [20] T. Aydemir and K. Kuru: “Purification and partial characterization of catalase from chicken erythrocytesand the effect of various inhibitors on enzyme activity”, Turk. J. Chem., Vol. 27, (2003), pp. 85–97.
  • [21] P. Chelikani, I. Fita and P. Loewen: “Diversity of structures and properties among catalases”, Cell. Mol. Life Sci., Vol. 61, (2004), pp. 192–208.[Crossref]
  • [22] J. Keyhani, E. Keyhani and J. Kamali: “Thermal stability of catalases active in dormant saffron (Crocus sativus L.) corms”, In: 10th Meeting of the International Study Group of Biothermokinetics (BTK), 7–10 Sep. 2002, Bordeaux- Arcachon (
  • [23] I.V. Berezin, N.L. Kliachko, A.V. Levashev, K. Martinek, V.V. Mojaev and Y. Khmelnitskii: Kinetic regularities in the catalysis with immobilized enzymes, Vishaya shkola, Moscow, 1987 (in Russian).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.