PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 3 | 3 | 376-381
Tytuł artykułu

Hydrostatic equilibrium and Tsallis’ equilibrium for self-gravitating systems

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Self-gravitating systems are generally thought to behavior non-extensively due to the long-range nature of gravitational forces. We discuss a relation between the nonextensive parameter q of Tsallis statistics, the temperature gradient and the gravitational potential based on the equation of hydrostatic equilibrium for self-gravitating systems. It is suggested that the nonextensive parameter in Tsallis statistics has a clear physical meaning with regard to the non-isothermal nature of the systems with long-range interactions. Tsallis’ equilibrium distribution for the self-gravitating systems describes the property of hydrostatic equilibrium of the systems.
Wydawca

Czasopismo
Rocznik
Tom
3
Numer
3
Strony
376-381
Opis fizyczny
Daty
wydano
2005-09-01
online
2005-09-01
Twórcy
autor
  • Department of Physics, School of Science, Tianjin University, 300072, Tianjin, China, jiulindu@yahoo.com.cn.
Bibliografia
  • [1] S. Chandrasekhar: An introduction to the theory of stellar structure, Dover, New York, 1942; J. Binney and S. Tremaine: Galactic dynamics, Princeton University Press, Princeton, 1987.
  • [2] S. Chapman and T.G. Cowling: The Mathematical Theory of Nonuniform Gases, 3rd ed., Cambridge University Press, 1970; Wang Zhuxi: An Introduction to Statistical Phhsics, The People’s Education Press, Beijing, 1965.
  • [3] S. Abe and A.K. Rajagopal: “Revisiting disorder and Tsallis statistics”, Science, Vol. 300, (2003), pp. 249–250; A. Plastino: “Revisiting disorder and Tsallis statistics”, Science, Vol.300, (2003), pp. 250–250; V. Latora, A. Rapisarda and A. Robledo: “Revistiting disorder and Tsallis statistics”, Science, Vol. 300, (2003), pp. 250–251. http://dx.doi.org/10.1126/science.300.5617.249d[Crossref]
  • [4] C. Tsallis: “Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys., Vol. 52, (1988), pp. 479–487. http://dx.doi.org/10.1007/BF01016429[Crossref]
  • [5] C. Tsallis and D. Prato: “Nonextensive statistical mechanics: Some links with astronomical phenomena”, In: H.J. Haubold (Ed.): Proceedings of the Xith United Nationa/European Space Agency Workshop on Basic Space Sciences; Cordoba, 9–13 Sept. 2002, Office for Outer Space affairs/United Nations, Kluwer. Academic Publishers, Dordrecht, 2003.
  • [6] J.A.S. Lima, R. Silva and J. Santos: “Jeans’ gravitational instability and nonextensive kinetic theory”, Astron. Astrophys., Vol. 396, (2002), pp. 309–313. http://dx.doi.org/10.1051/0004-6361:20021395[Crossref]
  • [7] J.L. Du: “Jeans criterion and nonextensive velocity distribution function in kinetic theory”, Phys. Lett. A, Vol. 320, (2004), pp. 347–351. http://dx.doi.org/10.1016/j.physleta.2003.11.047[Crossref]
  • [8] J.L. Du: “Jeans criterion in nonextensive statistical mechanics”, Physica A, Vol. 335, (2004), pp. 107–114. http://dx.doi.org/10.1016/j.physa.2003.11.027[Crossref]
  • [9] A. Taruya and M. Sakagami: “Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems”, Physica A, Vol. 307, (2002), pp. 185–206; M. Sakagami and A. Taruya: “Description of quasi-equilibrium states of self-gravitating systems based on nonextensive thermostatistics”, Physica A, Vol. 340, (2004), pp. 444–452. http://dx.doi.org/10.1016/S0378-4371(01)00622-7[Crossref]
  • [10] A. Plastino and A.R. Plastino: “Stellar polytropes and Tsallis’ entropy”, Phys. Lett. A, Vol. 174, (1993), pp. 384–386. http://dx.doi.org/10.1016/0375-9601(93)90195-6[Crossref]
  • [11] R. Silva and J.S. Alcaniz: “Nonextensive statistics and the stellar polytrope index”, Physica A, Vol. 341, (2004), pp. 208–211. http://dx.doi.org/10.1016/j.physa.2004.02.070[Crossref]
  • [12] C.A. Wuensche, A.L.B. Ribeiro, F.M. Ramos and R.R. Rosa: “Nonextensivity and galaxy clustering in the universe”, Physica A, Vol. 334, (2004), pp. 743–749. http://dx.doi.org/10.1016/j.physa.2004.06.056[Crossref]
  • [13] A. Taruya and M. Sakagami: “Long-term evolution of stellar self-gravitating systems away from thermal equilibrium: connection with nonextensive statistics”, Phys. Rev. Lett., Vol. 90, (2003), pp. 181101. http://dx.doi.org/10.1103/PhysRevLett.90.181101[Crossref]
  • [14] A. Taruya and M. Sakagami: “Fokker-Planck study of stellsr self-gravitating system away from the thermal equilibrium: connection with nonextensive statistics”, Physica A, Vol. 340, (2004), pp. 453–458. http://dx.doi.org/10.1016/j.physa.2004.04.040[Crossref]
  • [15] S.H. Hansen, D. Egli, L. Hollenstein and C. Salzmann: “Dark matter distribution function from nonextensive statistical mechanics”, astro-ph/0407111.
  • [16] S. Abe: “Thermodynamic limit of a classical gas in nonextensive statistical mechanics: negative specific heat and polytropism”, Phys. Lett. A, Vol. 263, (1999), pp. 424–429. http://dx.doi.org/10.1016/S0375-9601(99)00745-8[Crossref]
  • [17] R. Silva and J.S. Alcaniz: “Negative heat capacity and nonextensive kinetic theory”, Phys. Lett. A, Vol. 313, (2003), pp. 393–396. http://dx.doi.org/10.1016/S0375-9601(03)00858-2[Crossref]
  • [18] G. Kaniadakis, A. Lavagno and P. Quarati: “Generalized statistics and solar neutrinos”, Phys. Lett. B, Vol. 369, (1996), pp. 308–312; A. Lavagno and P. Quarati: “Classical and quantum nonextensive statistics effects in nuclear many-body problems”, Chaos, Solitons and Fractals, Vol. 13, (2002), pp. 569–580. http://dx.doi.org/10.1016/0370-2693(95)01535-3[Crossref]
  • [19] M. Coraddu, M. Lissia, G. Mezzorani and P. Quarati: “Super-Kamiokande hep neutrino best fit: a possible signal of non-Maxwellian solar plasma”, Physica A, Vol. 326, (2003), pp. 473–481. http://dx.doi.org/10.1016/S0378-4371(03)00359-5[Crossref]
  • [20] J.A.S. Lima, R. Silva and A.R. Plastino: “Nonextensive thermostatistics and the H theorem”, Phys. Rev. Lett., Vol. 86, (2001), pp. 2938–2941. http://dx.doi.org/10.1103/PhysRevLett.86.2938[Crossref]
  • [21] J.L. Du: “The nonextensive parameter and Tsallis distribution for self-gravitating systems”, Europhys. Lett., Vol. 67, (2004), pp. 893–899. http://dx.doi.org/10.1209/epl/i2004-10145-2[Crossref]
  • [22] J.L. Du: “Nonextensivity in nonequilibrium plasma systems with Coulombian longrange interactions”, Phys. Lett. A, Vol. 329, (2004), pp. 262–267. http://dx.doi.org/10.1016/j.physleta.2004.07.010[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475644
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.