Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 2 | 2 | 367-381
Tytuł artykułu

Mean-field expansion and meson effects in chiral condensate of analytically regularized Nambu-Jona-Lasinio model

Treść / Zawartość
Warianty tytułu
Języki publikacji
Scalar meson contributions in chiral quark condensate are calculated in the analytically regularized Nambu-Jona-Lasinio model using the framework of mean-field expansion in bilocal-source formalism. The sigma-meson contribution for physical values of the parameters is found to be small. Pion contribution is found to be significant and should be taken into account for the choice of the parameter values.

Opis fizyczny
  • Physical Department of Baku State University, Khalilov str., 23, 370148, Baku, Azerbaijan
  • Institute for High Energy Physics, Pobeda str., 1, 142280, Protvino, Moscow region, Russia,
  • [1] Y. Nambu and G. Jona-Lasinio: “Dynamical model of elementary particles based on an analogy with superconductivity. I.”, Physical Review, Vol. 122, (1961), pp. 345–358.[Crossref]
  • [2] T. Eguchi and H. Sugawara: “Extended model of elementary particles based on an analogy with superconductivity”, Physical Review, Vol. D 10, (1974), pp. 4257–4262. K. Kikkawa: “Quantum corrections in superconductor models”, Progress of Theoretical Physics, Vol. 56, (1976), pp. 947–961.[Crossref]
  • [3] H. Kleinert: “Hadronization of quark theories”, In: A. Zichichi (Ed.): Understanding the Fundamental Constituents of Matter, Plenum Press, New York, 1978, pp. 289–389.
  • [4] D. Ebert and M.K. Volkov: “Composite meson model with vector dominance based on U(2) invariant four quark interactions”, Zeitschrift für Physik, Vol. C 16, (1983), pp. 205–219.[Crossref]
  • [5] T. Hatsuda and T. Kunihoro: “Possible critical phenomena associated with the chiral symmetry breaking”, Physics Letters, Vol. B 145, (1984), pp. 7–10.[Crossref]
  • [6] V. Bernard, U.-G. Meissner and I. Zahed: “Decoupling of the pion at finite temperature and density”, Physical Review, Vol. D 36, (1987), pp. 819–823.[Crossref]
  • [7] A.S. Vshivtsev, V.Ch. Zhukovsky and K.G. Klimenko: “New critical properties of the Nambu-Jona-Lasinio model with nonzero chemical potential”, Journal of Experimental and Theoretical Physics”, Vol. 84, (1997), pp. 1047–1053.[Crossref]
  • [8] D. Ebert, K.G. Klimenko, M.A. Vdovichenko and A.S. Vshivtsev: “Magnetic oscillations in dense cold quark matter with four fermion interactions”, Physical Review, Vol. D 61, (2000), pp. 025005.
  • [9] D. Ebert and K.G. Klimenko: “Quark droplets stability induced by external magnetic field”, (2003), hep-ph/0305149
  • [10] S.P. Klevansky: “The Nambu-Jona-Lasinio model of quantum chromodynamics”, Reviews of Modern Physics, Vol. 64, (1992), pp. 649–708.[Crossref]
  • [11] T. Hatsuda and T. Kunihiro: “QCD Phenomenology based on a chiral effective Lagrangian”, Physics Reports, Vol. 247, (1994), pp. 221–367.[Crossref]
  • [12] P.P. Domitrovich, D. Bückers and H. Müther: “Nambu-Jona-Lasinio models beyond the mean field approximation”, Physical Review, Vol. C 48, (1993), pp. 413–422. [WoS]
  • [13] E. Quack and S.P. Klevansky: “Effective 1/N c expansion in the Nambu-Jona-Lasinio model”, Physical Review, Vol. C 49, (1994), pp. 3283–3288.
  • [14] D. Ebert, M. Nagy and M.K. Volkov: “To the problem of 1/N c approximation in the Nambu-Jona-Lasinio model”, Yadernaya Fizika, Vol. 59, (1996), pp. 149–152.
  • [15] D. Blaschke et al.: “1/N c expansion of the quark condensate at finite temperature”, Physical Review, Vol. C 53, (1996), pp. 2394–2400.
  • [16] M. Huang, P. Zhuang and W. Chao: “The mesonic fluctuations and corrections in chiral symmetry breaking vacuum”, Physics Letters, Vol. B 514, (2001), pp. 63–71.[Crossref]
  • [17] G. Ripka: “Quantum fluctuations of the quark condensate”, Nuclear Physics, Vol. A 683, (2001), 463–486.[Crossref]
  • [18] R.S. Plant and M.C. Birse: “Mesonic fluctuations in a nonlocal NJL model”, Nuclear Physics, Vol. A 703, (2002), pp. 717–744.[Crossref]
  • [19] S. Krewald and K. Nakayama: “A new interpretation of dimensional regularization”, Annals of Physics, Vol. 216, (1992), pp. 201–225.[Crossref]
  • [20] A.E. Radzhabov and M.K. Volkov: “Nonlocal chiral quark model with confinement”, (2003), hep-ph/0305272
  • [21] V.E. Rochev: “A non-perturbative method for the calculation of Green functions”, Journal of Physics, Vol. A 30, (1997), pp. 3671–3679.[Crossref]
  • [22] V.E. Rochev and P.A. Saponov: “The four-fernion interaction in D=2,3,4: a nonperturbative treatment”, International Journal of Modern Physics, Vol. A 13, (1998), pp. 3649–3665.[Crossref]
  • [23] V.E. Rochev: “On nonperturbative calculations in quantum electrodynamics”, Journal of Physics”, Vol. A 33, (2000), 7379–7406.[Crossref]
  • [24] V.E. Rochev: “An approach to approximate calculations of Green functions”, In: B.B. Levchenko and V.I. Savrin (Eds.): Proceedings of XIV International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP’99, Moscow 1999), MSU-Press, Moscow, 1999, pp. 572–578.
  • [25] H. Kleinert and B. Van den Bossche: “No spontaneous breakdown of chiral symmetry in Nambu-Jona-Lasinio model?”, Physics Letters, Vol. B 474, (2000), pp. 336–346.[Crossref]
  • [26] T. Fujita, M. Hiramoto and H. Takahashi: “No Goldstone boson in the NJL and Thirring models”, (2003), hep-th/0306110
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.