PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | 2 | 2 | 329-356
Tytuł artykułu

Polarons in axial transport in single-layer high-Tc superconductors

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The temperatureT dependencies ρ(T) of normal state electric resistivitiesρ c (axial) andρ ab (in plane) of single-layer high-T c superconductors show common trends: AsT is raised, the resistivity first drops steeply before it starts rising αT above an apparent semiconductor-to-metal crossoverT cross. To analyze ρ(T) we plottT/ρ againstT at various dopingsx for bothρ c andρ ab.T/ρ is inversely proportional to the traversal time across a potential barrier as an ionic particle drifts in an electric field. We findT/ρ in good agreement with theT dependence of the quantum rate of migrating particles: AsT is raised, a zero-point rate at the lowestT is extended to a nearly flat plateau before a thermally activated branch sets in. We also find evidence for the admixture of 1- & 2-phonon absorptions below the Arrhenius range. These features shape the semiconductor-like branch below Tcross. AboveT cross a metallic-like branch sets in, its αT character deriving from the field coupling of the migrating particle. Our analysis suggests that metal physics may not suffice if ionic features play a role in transport. We attribute our conclusions to the drift of strong-coupling polarons along Cu−O bonds. These “bond polarons” originate from carrier scattering by double-well potentials associated with the bonds. A bond polaron dissociates to a free hole as it passes onto a neighboring O-O link.
Wydawca

Czasopismo
Rocznik
Tom
2
Numer
2
Strony
329-356
Opis fizyczny
Daty
wydano
2004-06-01
online
2004-06-01
Twórcy
  • Central Laboratory for Photoprocesses, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784, Sofia, Bulgaria
  • Fulbright Research Fellow, Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Dr., 92093-0340, La Jolla, CA, mladen@issp.bas.bg
  • PGA Solutions, 919 Master Dr., 43119, Galloway, OH
Bibliografia
  • [1] G.J. Bednorz and K.A. Müller: “Perovskite-type oxides-The new approach to high-Tc superconductivity”, Reviews of Modern Physics, Vol. 60, (1987), pp. 585–600. http://dx.doi.org/10.1103/RevModPhys.60.585[Crossref]
  • [2] V.J. Emery, S.A. Kivelson and O. Zachar: “Spin-gap proximity effect mechanism of high temperature superconductivity”, Physical Review B, Vol. 56, (1997), pp. 6120–6147. http://dx.doi.org/10.1103/PhysRevB.56.6120[Crossref]
  • [3] J.H. Miller, Jr. and J.R. Claycomb: “Classical and high-temperature superconductivity”, In: M.P. Das (Ed.): Proc. Summer School Workshop on Condensed Matter Physics, Canberra Australia, 1997, pp. 1–43.
  • [4] M.B. Maple: “High temperature superconductivity”, Journal of Magnetism and Magnetic Materials, Vol. 177–181, (1998), pp. 18–30. http://dx.doi.org/10.1016/S0304-8853(97)00999-2[Crossref]
  • [5] R.J. Radtke and K. Levin: “Origin of intrinsic Josephson coupling in the cuprates and its relation to order parameter symmetry: An incoherent hopping model”, Physica C, Vol. 250, (1995), pp. 282–294. http://dx.doi.org/10.1016/0921-4534(95)00359-2[Crossref]
  • [6] A.A. Abrikosov: “Resonant tunneling in high-Tc superconductors”, Argonne National Laboratory, 1998, preprint.
  • [7] M. Georgiev, M. Ivanovich, I. Polyanski and P. Petrova: “Renormalized phonon frequencies and electric resistivity along c-axis in single-plane high-temperature superconductors: A double-well analysis”, In: M. Ausloos and S. Kruchinin (Ed.): Proc. NATO ARW, Yalta (Ukraine), April 28–May 2, 1998, Kluwer, Dordrecht, 1998, pp. 173–186.
  • [8] M. Zoli: “c-axis resistivity in high-Tc superconductors”, Physical Review B, Vol. 56, (1997), p. 111. http://dx.doi.org/10.1103/PhysRevB.56.111[Crossref]
  • [9] N.E. Hussey, J.R. Cooper, Y. Kodama and Y. Nishihara: “Out-of-plane magnetoresistance of La2−x Srx CuO4: Evidence for interplanar scattering in the c-axis transport”, Physical Review B, Vol. 58, (1998), pp. 1–4. http://dx.doi.org/10.1103/PhysRevB.58.R611[Crossref]
  • [10] A.G. Rojo and K. Levin: “Model for c-axis transport in high Tc cuprates”, Physical Review B, Vol. 48, (1993), pp. 16861–16864. http://dx.doi.org/10.1103/PhysRevB.48.16861[Crossref]
  • [11] A.A. Alexandrov and N.F. Mott: “Bipolarons”, Reports on Progress in Physics, Vol. 57, (1994), pp. 1197–1288. http://dx.doi.org/10.1088/0034-4885/57/12/001[Crossref]
  • [12] Y. Ando, G.S. Boebinger, A. Passner, N.L. Wang, C. Geibel, and F. Steglich: “Metallic in-plane and divergent out-of-plane resistivity of a high-Tc cuprate in the zero-temperature limit”, Physical Review Letters, Vol. 77, (1996), pp. 2065–2069. http://dx.doi.org/10.1103/PhysRevLett.77.2065[Crossref]
  • [13] G.S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, “Insulator-to-metal crossover in the normal state of La2−x Srx CuO4 near optimum doping”, Physical Review Letters, Vol. 77, (1996), pp. 5417–5420. http://dx.doi.org/10.1103/PhysRevLett.77.5417[Crossref]
  • [14] N.F. Mott and E.A. Davis: Electron Processes in Non-Crystalline Materials, Clarendon, Oxford, 1979.
  • [15] Y. Zha, S.L. Cooper and D. Pines: “Model of c-axis resistivity of high Tc cuprates”, Physical Review B, Vol. 53, (1996), pp. 8253–8256. http://dx.doi.org/10.1103/PhysRevB.53.8253[Crossref]
  • [16] A.S. Alexandrov, V.V. Kabanov and N.F. Mott: “Coherent ab and c Transport Theory of High-Tc Cuprates”, Physical Review Letters, Vol. 77, (1996), pp. 4796–4799. http://dx.doi.org/10.1103/PhysRevLett.77.4796[Crossref]
  • [17] A.S. Alexandrov: “Logarithmic normal state resistivity of high-Tc cuprates”, Physics Letters A, Vol. 236, (1997), pp. 132–136. http://dx.doi.org/10.1016/S0375-9601(97)00714-7[Crossref]
  • [18] Y. Ando, G.S. Boebinger, A. Passner, T. Kimura and K. Kishio: “Logarithmic diveregence of both in-plane and out-of-plane normal-state resistivities of superconducting La2−x Srx CuO4 in the zero-temperature limit”, Physical Review Letters, Vol. 75, (1995), pp. 4662–4665. http://dx.doi.org/10.1103/PhysRevLett.75.4662[Crossref]
  • [19] A.B. Lidiard: “Ionic Conductivity”, In: Handbuch der Physik, Vol. 20, Part II, Springer, Berlin, 1957.
  • [20] L. Mihailov, M. D. Ivanovich and M. Georgiev: “Tc-x phase diagrams and infrared spectra due to axial charge-transfer modes in La2−x Srx CuO4: A composite boson model”, Journal of the Physical Society of Japan, Vol. 62, (1993), pp. 2431–2444. http://dx.doi.org/10.1143/JPSJ.62.2431[Crossref]
  • [21] S.G. Christov: “Adiabatic polaron theory of electron hopping in crystals: A reaction-rate approach”, Physical Review B, Vol. 26, (1982), pp. 6918–6935. http://dx.doi.org/10.1103/PhysRevB.26.6918[Crossref]
  • [22] M. Georgiev: “Reaction rate approach to non-radiative transitions in polar solids”, Revista Mexicana de Fisica, Vol. 31, (1985), pp. 221–257.
  • [23] I.B. Bersuker: The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Academic Press, New York, 1984.
  • [24] L.F. Feiner, M. Grilli and C. Di Castro: “Apical oxygen ions and the electronic structure of the high Tc cuprates”, Physical Review B, Vol. 45, (1992), pp. 10647–10669. http://dx.doi.org/10.1103/PhysRevB.45.10647[Crossref]
  • [25] M. Borissov and M. Georgiev: “Pairing of off-center polarons due to dipole-dipole interaction: Possible clue to the high-temperature superconductivity”, Zeitschrift fur Physik B-Condensed Matter Vol. 70, (1988), pp. 413–420. http://dx.doi.org/10.1007/BF01312113[Crossref]
  • [26] R. Mealli and D.M. Proserpio: “Computer Aided Composition of Atomic Orbitals (A Package of Programs for Molecular Orbital Analysis)”, Journal of Chemical Education, Vol. 67, (1990), pp. 399–402. http://dx.doi.org/10.1021/ed067p399[Crossref]
  • [27] J. Jäckle: “On the ultrasonic attenuation in glasses at low temperatures”, Zeitschrift fur Physik, Vol. 257, (1972), pp. 212–223; J. Jäckle, L. Piche, W. Arnold and S. Hunklinger: “Elastic effects of structural relaxation in glasses at low temperatures”, Journal of Non-Crystalline Solids, Vol. 20, (1976), pp. 365. http://dx.doi.org/10.1007/BF01401204[Crossref]
  • [28] X.-X. Bi and P.C. Ecklund: “Polaron contribution to the infrared optical response of La2−x Srx CuO4+δ and La2−x Srx NiO4+δ”, Physical Review B, Vol. 70, (1993), pp. 2625–2628.
  • [29] A. Vavrek, M. Borissov, and M. Georgiev: “Vibronic theory of high- temperature superconductivity”, In: M. Borissov’s Memorial Volume, Bulgarian Academy of Sciences, Sofia, 2004; A. Vavrek, M. Borissov and L. Mihailov: “Vibronic optical absorption in LaSCO and YBCO”, Comptes rendus de l’Academie bulgare des Sciences, Vol. 43, (1990), pp. 33–36.
  • [30] N.F. Mott: “The spin-polaron theory of high-Tc superconductivity”, Advances in Physics, Vol. 39, (1990), pp. 55–81. http://dx.doi.org/10.1080/00018739000101471[Crossref]
  • [31] M. Georgiev, M. Ivanovich, I. Polyanski, P. Petrova, S. Tsintsarska and A. Gochev: “Renormalized phonon frequencies and electric resistivity along the c-axis in single-plane high-temperature superconductors: a double-well analysis”, Bulgarian Journal of Physics, Vol. 28, (2001), pp. 63–75.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475635
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.