Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 2 | 2 | 300-328
Tytuł artykułu

Multi-mode ground state interaction terms in C60-based electron donor-acceptor complexes

Treść / Zawartość
Warianty tytułu
Języki publikacji
Quantum-chemical testing of donor-acceptor properties of binary molecular complexes, related to the singlet state, is suggested as QCh calculations of studied systems and their constituents by using both spin-nondependent (RHF) and spindependent (UHF) versions of the exploited computational tool. The avoided crossing of intermolecular interaction terms of neutral moleculesE int(A 0 B 0) and molecular ionsE int(A + B −) causes a multi-mode character of the ground state term. The dependence of D-A complex properties on the type of the term, space positions of the term minimum, and the interrelation of the corresponding energies are discussed. The suggested approach has been applied to binary complexes C60+X (X=TAE, TDAE, DMMA, COANP, 2Li, Mg).

Opis fizyczny
  • People Friendship University of Russia, ul.Miklukho-Maklaya 6, 117198, Moscow, Russia,
  • [1] R.S. Mulliken: “Structures of Complexes Formed by Halogene Molecules with Aromatic and with Oxygenated Solvents”, J. Amer. Chem. Soc., Vol. 72, (1950), pp. 600–608; R.S. Mulliken: “Molecular Compounds and Their Spectra. II.”, J. Amer. Chem. Soc., Vol. 74, (1952), pp. 811–824.[Crossref]
  • [2] R.S. Mulliken and W.B. Person: Molecular Complexes, J. Wiley&Sons, New York, 1969.
  • [3] R. Forster: Organic Charge-Transfer Complexes, Academic Press, London and New York, 1969.
  • [4] J. Rose: Molecular Complexes, Pergamon, Oxford, 1967.
  • [5] I.G. Kaplan: Vvedenie v teoriu mezhmolekujarnykh vzaimodeistvij (introduction to the Theory of Intermolecular Interaction), Nauka, Moskva, 1982.
  • [6] M.G. Evans and J. Polanyi: “Interaction between Neutral Molecules and Their Ions”, Trans. Far. Soc., Vol. 35, (1939), pp. 178–183.[Crossref]
  • [7] D.R. Yarkony: “Current Issues in Nondiabatic Chemistry”, J. Phys. Chem., Vol. 100, (1996), pp. 18612–18628.[Crossref]
  • [8] D.R. Herschbach: “Reactive Scattering in Molecular Beam”, In: J. Roos (Ed.): Molecular Beams, Adv. Chem. Phys., Vol. 10, (1966), pp. 319–394.
  • [9] V.B. Leonas and A.P. Kalinin: “Study of Ionization under Slow Collisions of Atomic Particles”, Uspekhi Fiz. Nauk, Soviet Physics Uspekhi, Vol. 121, (1977), pp. 561–592, (in Russian).
  • [10] K. Morokuma: “Molecular Orbital Study of Hydrogen Bonds. III”, J. Chem. Phys., Vol. 55, (1971), pp. 1236–1244.[Crossref]
  • [11] K. Kitaura, and K. Morokuma: “Energy decomposition Analyses of Electron Donor-Accaptor Complexes”, Int. Journ. Quant. Chem., Vol. 10, (1976), pp. 325–329.[Crossref]
  • [12] Z.G. Soos and D.J. Klein: “Charge-Transfer in Solid-State Complexes”, In: R. Foster (Ed.): Molecular Association, Academic Press, London and New York, 1975, pp. 1–108.
  • [13] E.A. Silinsh: Organic Molecular Crystals: Their Electronic States, Springer, Berlin, 1980.
  • [14] R.M. Glaeser and R.S. Berry: “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models”, J. Chem. Phys., Vol. 44, (1966), pp, 3797–3810.[Crossref]
  • [15] L. Noodleman: “Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers”, J. Chem. Phys., Vol. 74, (1981), pp. 5737–5743.[Crossref]
  • [16] E.F. Sheka: “Fullerenes as Polyradicals”, CEJP 2(1), (2004), pp. 160–182.
  • [17] M. Benard: “The Study of Hartree-Fock Instability in Cr2(O2CH)4 and Mo2(O2CH)4”, J. Chem. Phys., Vol. 71, (1979), pp. 2646–2556.[Crossref]
  • [18] P.J. Hay, J.C. Thibeault and R. Hoffman: “Orbital Interaction in Metal Dimer Complexes”, J. Amer. Chem. Soc., Vol. 97, (1975), pp. 4884–4899.[Crossref]
  • [19] D.V. Konarev and R.N. Lyubovskaya: “Donor-Acceptor Complexes and Ion-Radical Salts Based on Fullerenes”, Russian Chem. Rev., Vol. 68, (1999), pp. 19–38.[Crossref]
  • [20] D.V. Konarev, A.Yu. Kovalevsky, A.L. Litvinov, N.V. Drichko, B.P. Tarasov, P. Coppens and R.N. Lyubovskaya: “Molecular Complexes of Fullerenes C60 and C70 with Saturated Amines”, J. Solid State Chem., Vol. 168, (2002), pp. 474–485.[Crossref]
  • [21] M.J.S. Dewar, E.G. Zoebisch, E.F. Healey and J.J.P. Stewart: “AM1: A New General Purpose Quantum Mechanical Molecular Model”, J. Amer. Chem. Soc., Vol. 107, (1985), pp. 3902–3909.[Crossref]
  • [22] V.A. Zayets: CLUSTER-Z1: Quantum-Chemical Software for Calculations in the s, p-Basis, Institute of Surface Chemistry, Nat. Ac. Sci. of Ukraine, Kiev, 1990.
  • [23] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, Ě.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery: “General Atomic and Molecular Electronic System”, J. Comput. Chem., Vol. 14, (1993), pp. 1347–1363.[Crossref]
  • [24] F. Wudl: “The Chemical Properties of Buckminsterfullerenes (C60) and the Birth and Infancy of Fulleroids”, Acc. Chem. Res., Vol. 25, (1992), pp. 157–161.[Crossref]
  • [25] Just recently has been shown [26] that not a pyracyclene unit but a particularly selected naphthalene-core fragment C10, which is involved in a spin-matched 6*C10 configuration of the molecule, determines a starting regioselectivity of the atoms. From a binding ability viewpoint, the central C-C bond has a preference. These very binding sites have been intuitively selected in the current study.
  • [26] E.F. Sheka: “Regioselectivity of the Fullerence C60”: In Book of Abstracts of the 8 th Fock School on Quantum Chemistry, 26–30 April 2004, V. Novgorod, Paper 976.
  • [27] A.I. Kitaygorodski: Molekulyarnyje kristally (Molecular Crystals), Nauka, Moskava, 1971.
  • [28] The fulleroid structure, recently obtained when starting from the ions (C60)− and (TAE)+, is fully identical to shown in Table 4 and does not depend on the starting distance between ions.
  • [29] B. Narymbetov, A. Omerzu, V.V. Kabanov, N. Tokumoto, H. Kobayashi and D. Mihailovich, “Origin of Ferromagnetic Exchange Interactions in a Fullerence-Organic Compounds”, Nature, Vol. 407, (2000), pp. 883–885.[Crossref]
  • [30] Y. Liu, D. Zhang, H. Hu and Ch. Liu: “Theoretical Study of the Electronic Spectra and Second-Oder Non-Linear Optical Properties of N-Methyl-2-(2’-Thiophen)-Pyrrolo [3,4] C60”, J. Mol. Struct. (Theochem), Vol. 545, (2001), pp. 97–103.[Crossref]
  • [31] Recent study of the MPC moleculae absorption spectrum has revealed a close similarity of the latter to that of the C60 molecule [32].
  • [32] B.S. Razbirin: “Optical Spectroscopy of Matrix-Isolated Fullerenes”, In: Book of Abstracts of 6-th Biennial International Workshop “Fullerenes and Atomic Clusters”, 30 June–4 July 2003, St. Petersburg, Paper 16.
  • [33] The above shown non-dependence of the coupling energy of weak D-A complexes on mutual orientation of molecular partners well explains a stability of molecular crystals belonging to an extended class of intermolecular configurations of the C60+X type [19,29], in spite of practically free rotation of the fullerene in these crystals at ambient temperature.
  • [34] N.V. Kamaina and E.F. Sheka: “Limitters of Laser Emission and Diffraction Elements based on COANP-Fullerene system: Non-Linear Optical Properties and Quantum-Chemical Modelling”, Optika i spektroskopia, Vol. 96, (2004), pp. 479–493.
  • [35] S. Nagase, K. Kobayashi and T. Akasaka: “Recent Advances in the Structural Determination of Endohedral Fullerenes”, J. Comput. Chem., Vol. 19, (1998), pp. 232–239.<232::AID-JCC16>3.0.CO;2-J[Crossref]
  • [36] H. Shinohara: “Endohedral Metallofullerebnes”, Rep. Progr. Phys., Vol. 63, (2000), pp. 843–892.[Crossref]
  • [37] J.J.P. Stewart: “Optimization of Parameters for Semiempirical Methods. 1. Method”, J. Comp. Chem., Vol. 10, (1989), pp. 209–220, “Optimization of Parameters for Semiempirical Methods. 2. Applications”, pp. 221–264.[Crossref]
  • [38] E. Anders, R. Koch and P. Freunscht: “Optimization and Application of Lithium Parameters for PM3”, J. Comp. Chem., Vol. 14, (1993), pp. 1301–1312.[Crossref]
  • [39] J.J.P. Stewart: “Optimization and Application of Magnesium Parameters for PM3”, J. Comp. Chem., Vol. 12, (1991), pp. 320–328.[Crossref]
  • [40] K.B. Wiberg: “Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbonyl and Cyclobutyl Cation and to Bicyclibutane”, Tetrahedron, Vol. 24, (1968), pp. 1083–1086.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.