PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 3 | 4 | 636-659
Tytuł artykułu

The cubic period-distance relation for the Kate reversible pendulum

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe the correct cubic relation between the mass configuration of a Kater reversible pendulum and its period of oscillation. From an analysis of its solutions we conclude that there could be as many as three distinct mass configurations for which the periods of small oscillations about the two pivots of the pendulum have the same value. We also discuss a real compound Kater pendulum that realizes this property.
Wydawca

Czasopismo
Rocznik
Tom
3
Numer
4
Strony
636-659
Opis fizyczny
Daty
wydano
2005-12-01
online
2005-12-01
Twórcy
  • Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, 10123, Torino, Italy, michele.rossi@unito.it
  • Dipartimento di Fisica Generale, Università degli Studi di Torino, via P. Giuria 1, 10125, Torino, Italy, zaninetti@ph.unito.it
Bibliografia
  • [1] D. Randall Peters: “Student-friendly precision pendulum”, Phys. Teach., Vol. 37, (1999), pp. 390–393. http://dx.doi.org/10.1119/1.880328[Crossref]
  • [2] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part I. Theoretical considerations”, Phys. Rev. (Series I), Vol. 25, (1907), pp 274–293. http://dx.doi.org/10.1103/PhysRevSeriesI.25.274[Crossref]
  • [3] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part II. Experimental verifications”, Phys. Rev. I, Vol. 34, (1912), pp. 110–124.
  • [4] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part III. A critique of captain Kater's paper of 1818”, Phys. Rev. I, Vol. 457, (1913), pp 457–462. http://dx.doi.org/10.1103/PhysRev.1.457[Crossref]
  • [5] D. Candela, K.M. Martini, R.V. Krotkov and K.H. Langley: “Bessel's improved Kater pendulum in the teaching lab”, Am. J. Phys., Vol. 69, (2001), pp. 714–720. http://dx.doi.org/10.1119/1.1349544[Crossref]
  • [6] R. Resnick, D. Halliday, K.S. Krane:Physics, John Wiley & Sons, New York, 1991.
  • [7] J. Harris:Algebraic Geometry, Springer-Verlag, New York, 1992.
  • [8] I.R. Shafarevich:Basic Algebraic Geometry, Springer-Verlag, New York, 1977.
  • [9] R.A. Nelson and M.G. Olsson: “The pendulum-rich physics from a simple system”, Am. J. Phys., Vol. 54, (1986), pp. 112–121. http://dx.doi.org/10.1119/1.14703[Crossref]
  • [10] G. Cerutti and P. DeMaria: “Misure assolute dell' accelerazione di gravità a Torino”, In:Rapporto Tecnico Interno, R432, Istituto di Metrologia “G.Colonnetti”, Torino, 1996.
  • [11] P.R. Bevington and D. Keith Robinson:Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Inc., New York, 1992.
  • [12] P. Moreland: “Improving precision and accuracy in the glab”, Phys. Teach., Vol. 38, (2000), pp 367–369. http://dx.doi.org/10.1119/1.1321823[Crossref]
  • [13] NAG, http://www.nag.co.uk/
  • [14] Numerical Recipes, http://www.nr.com/
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.