PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 3 | 2 | 247-257
Tytuł artykułu

On the size dependence of surface tension in the temperature range from melting point to critical point

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of size dependence of surface tension was investigated in view of a more general problem of the applicability of Gibbs’ thermodynamics to nanosized objects. For the first time, the effective surface tension (coinciding with the specific excess free energy for an equimolecular dividing surface) was calculated within a wide temperature range, from the melting temperature to the critical point, using the thermodynamic perturbation theory. Calculations were carried out for Lennard-Jones and metallic nanosized droplets. It was found that the effective surface tension decreases both, with temperature and particle size.
Wydawca

Czasopismo
Rocznik
Tom
3
Numer
2
Strony
247-257
Opis fizyczny
Daty
wydano
2005-06-01
online
2005-06-01
Twórcy
Bibliografia
  • [1] J.W. Gibbs:The Collected Works, Vol. 1, Longmans Green and Co, New York London, Toronto, 1928.
  • [2] R.C. Tolman: “The effect of droplet size on surface tension”, Journ. Chem. Phys., Vol. 17, (1949), pp. 333–340. http://dx.doi.org/10.1063/1.1747247[Crossref]
  • [3] T.L. Hill:Thermodynamics of Small Systems, W.A. Benjamin, Inc., Publishers, New York, Amsterdam, 1963.
  • [4] A.I. Rusanov:Phasengleichgewichte und Grenzflaechenerscheinungen, Chapter 8, Academe-Verlag, Berlin, 1978.
  • [5] L.M. Shcherbakov:Research in Surface Forces, Vol. 2, Consultants Bureau, N.Y., 1966, pp. 26–32.
  • [6] V.M. Samsonov, N.Yu. Sdobnyakov and A.N. Bazulev: “On thermodynamic stability conditions for nanosized particles”, Surface Science, Vol. 532–535, (2003), pp. 526–530. http://dx.doi.org/10.1016/S0039-6028(03)00090-6[Crossref]
  • [7] V.M. Samsonov and N.Yu. Sdobnyakov: “On thermodynamic stability conditions for nanosized particles”, Central European Journal of Physics, Vol. 2, (2003), pp. 344–354. http://dx.doi.org/10.2478/BF02476301[Crossref]
  • [8] J. Schmelzer: “The Curvature Dependence of Surface Tension of Small Droplets”Journal of Chemistry Society Faraday Transitions, Vol. 82, (1986), pp. 1421–1428. http://dx.doi.org/10.1039/f19868201421[Crossref]
  • [9] V.M. Samsonov, L.M. Scherbakov, A.R. Novoselov and A.R. Lebedev: “Investigation of the microdrop surface tension and the linear tension of the wetting perimeter on the basis of similarity concepts and thermodynamic perturbation theory”, Colloids and Surfaces, Vol. 160(2), (1999), pp. 117–121. http://dx.doi.org/10.1016/S0927-7757(99)00350-7[Crossref]
  • [10] V.M. Samsonov: “Conditions for applicability of a thermodynamic description of highly disperse and microheterogeneous systems”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1863–1867.
  • [11] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “Thermodynamic perturbation theory calculations of interpose tension in small objects”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1872–1876.
  • [12] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “Surface tension in small droplets and nanocrystals”, Journal of Physical Chemistry, Vol. 77, (2003), pp. S158–S162.
  • [13] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “On applicability of Gibbs thermodynamics to nanoparticles”, Central European Journal of Physics, Vol. 3, (2003), pp. 474–484. http://dx.doi.org/10.2478/BF02475858[Crossref]
  • [14] V.M. Samsonov, N.Yu. Sdobnyakov and A.N. Bazulev: “Size dependence of the surface tension and the problem Gibbs thermodynamics extension to nanosystems”, Colloids and surfaces A: Physicochemical Engineering Aspects, Vol. 239, (2004), pp. 113–117. http://dx.doi.org/10.1016/j.colsurfa.2004.01.016[Crossref]
  • [15] R.P. Feynman:Statistical Mechanics, chapter 2, W.A. Benjamin, Inc., Massachusetts, 1972
  • [16] C.A. Croxton:Liquid state Physics, chapter 2, Cambridge University Press, Cambridge, 1974.
  • [17] Physical quantities. Handbook, Energoatomizdat, Moscow, 1991, pp. 331–332.
  • [18] D. Schiff: “Computer experiments on liquid metals”, Physical Review, Vol. 186, (1969), pp. 151–159. http://dx.doi.org/10.1103/PhysRev.186.151[Crossref]
  • [19] T.L. Hill:Statistical Mechanics, chapter 6, McGraw-Hill Book Company, Inc., New York-Totonto-London, 1956.
  • [20] E. Matteoli and G. Mansoori: “A simple expression for radial functions of pure fluids and mixtures”, Journal of Chemical Physics, Vol. 103(11), (1995), pp. 4672–4677. http://dx.doi.org/10.1063/1.470654[Crossref]
  • [21] N.H. March and M.P. Tosi:Atomic dynamics in liquids, chapter 9, Macmillan Press, London, 1976.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475591
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.