Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 3 | 2 | 190-208
Tytuł artykułu

Some examples of negative feedback in the Earth climate system

Treść / Zawartość
Warianty tytułu
Języki publikacji
Temporal variability of daily time series for total solar irradiance at the top of the atmosphere, the Microwave Sounding Unit (MSU) based global, hemispherical and zonal average temperature for the lower troposphere and stratosphere together with 5 surface air temperature data, measured at various meteorological stations have been studied by means of the structure function. From the growth rate of the structure function in the time interval between 32 and 4096 days it follows that the variability of the series represents an anti-persistent (AP) behavior. This property in turn shows a domination of negative feedback in the physical system generating the lower tropospheric temperature variability. Distribution of the increments over various ranges and correlations between them are calculated in order to determine the quantitative characteristics describing temporal variability.
Słowa kluczowe

Opis fizyczny
  • Tartu Observatory, 61602, Tõravere, Estonia,
  • [1] D.E. Parker, T.P. Legg and C.K. Folland: “A new daily Central England Temperature Series, 1772–1991’, Int. J. Climatol., Vol. 12, (1992), pp. 317–342. [Crossref]
  • [2] B.B. Mandelbrot:The fractal geometry of nature, W. H. Freeman, New York, 1982.
  • [3] R.A. Bryson: “The paradigm of climatology: An essay”.Bull. Amer. Meteorol. Soc. Vol. 78, (1997), pp. 449–455.<0449:TPOCAE>2.0.CO;2[Crossref]
  • [4] A. Davis, A. Marshak, W. Wiscombe and R. Cahalan: “Multifractal characterizations of intermittency in nonstationary geophysical signals and fields”, In: G. Trevino et al (Eds.):Current Topics in Nonstationary Analysis, World-Scientific. Singapore, 1996, pp. 97–158.
  • [5] A.S. Monin and A.M. Yaglom:Statistical Fluid Mechanics, Vol. 2, MIT Press, Boston Massachusetts, 1975.
  • [6] J. Beran:Statistics for long-memory processes, Chapman & Hall, New York, 1994.
  • [7] M.S. Taqqu, V. Teverovsky and W. Willinger: “Estimation for long-range dependence: An empirical study”, Fractals, Vol. 3, (1995) pp. 785–798.
  • [8] S. Lovejoy and D. Schertzer: “Scale invariance in climatological temperatures and the local spectral plateau”, Ann. Geophys., Vol. 4B, (1986), pp. 401–410.
  • [9] F. Schmitt, S. Lovejoy and D. Schertzer: “Multifractal analysis of the Greenland ice-core project climate data”, Geophys. Res. Lett., Vol. 22, (1995), pp. 1689–1692.[Crossref]
  • [10] O. Kärner: “On total solar irradiance variability”, In: A. Wilson (Ed):Proceedings of the SOHO 11 Symposium on ‘From Solar Min to Max: Half a Solar Cycle with SOHO’ WRC/PMOD, Davos, Switzerland (ESA SP-508, June 2002), pp. 215–218.
  • [11] O. Kärner: “On nonstationarity and antipersistency in global temperature series”, J. Geophys. Res., Vol. D107, (2002), doi:10.1029/2001JD002024. [Crossref]
  • [12] A.S. Monin:An Introduction to the Theory of Climate, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1986.
  • [13] D.L. Hartmann:Global Physical Climatology, Academic Press, San Diego, 1994.
  • [14] J. Hansen, A. Lacis, R. Ruedy, M. Sato and H. Wilson: “How sensitive is the World’s Climate?”, Natl. Geog. Res. Exploration, Vol. 9, (1993), pp. 142–158.
  • [15] M. Palus and D. Novotna: “Testing for non-linearity in weather records”, Phys. Lett. A, Vol. 193, (1994), pp. 67–74.[Crossref]
  • [16] G. Plaut, M. Ghil and R. Vautard: “Interannual and interdecadal variability in 335 years of Central England temperature”, Science, Vol. 268, (1995), pp. 710–713.
  • [17] J.D. Pelletier and D.L. Turcotte: “Self-affine sime series: II Applications and models”, Advances in Geophysics, Vol. 40, (1999), pp. 91–166.
  • [18] D.I. Harwey and T.C. Mills: “Modeling trends in Central England temperatures”, J. of Forecasting, Vol. 22, (2003), pp. 35–47.[Crossref]
  • [19] R. McKitrick and P.J. Michaels: “A test of corrections for extraneous signals in gridded surface temperature data”, Climate Research, Vol. 26, (2004), pp. 159–173.
  • [20] C. Fröhlich and J. Lean: “Total Solar Irradiance Variations”, In: F.L. Deubner et al. (Eds.), New Eyes to see inside the Sun and Stars, Proceedings IAU Symposium 185, Kyoto, August 1997. Kluwer Academic Publ., Dordrecht, The Netherlands, 1998, pp. 89–102.
  • [21] R.W. Spencer, J.R. Christy and N.C. Grody: “Global Atmospheric Temperature Monitoring with Satellite Microwave Measurements Method and Results 1979–84”, J. Climate, Vol. 3, (1990), pp. 1111–1128.<1111:GATMWS>2.0.CO;2[Crossref]
  • [22] J.R. Christy, R.W. Spencer and W.D. Braswell: “MSU tropospheric temperatures: Dataset construction and radiosonde comparisons”, J. Atmos. Oceanic Tech., Vol. 17, (2000), pp. 1153–1170.<1153:MTTDCA>2.0.CO;2[Crossref]
  • [23] W. Feller:Introduction to Probability Theory and Applications, Vol. 1, 3rd Ed., Wiley, New York, 1988.
  • [24] R.F. Voss: “Fractals in nature: from characterization to simulation”, In: H.O. Peitgen and D. Saupe (Eds):The Science of Fractal Images, Springer, New York, (1988). pp. 21–70.
  • [25] W.H. Press, S.A. Teukolsky, V.T. Vetterling and B.P. Flannery:Numerical Recipes in FORTRAN, 2nd Ed., Cambridge University Press, New York, 1993.
  • [26] IPCC:Climate Change 1995: The Science of Climate Change. Contribution of WG I to the Second Assessment Report of the IPCC. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (Eds.), Cambridge University Press, 1996.
  • [27] J.V. Bradley:Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, NJ, 1968.
  • [28] D.H. Douglass, E.G. Blackman and R.S. Knox: “Temperature response of Earth to the annual solar irradiance cycle”, Phys. Lett. A, Vol. 323, (2004), pp. 315–322.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.