Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 2 | 2 | 371-387
Tytuł artykułu

Intermicellar material exchange in reverse micelles formed by ionic AOT and nonionic Igepal surfactants studied by means of pulse radiolysis. Influence of the temperature

Treść / Zawartość
Warianty tytułu
Języki publikacji
The recombination of thiocyanate anion radicals, (SCN)2−, formed pulse radiolytically within the water pools of reverse micelles stabilized with anionic AOT and nonionic Igepal surfactants, was proved as an indicator reaction to study intermicellar exchange. It was found that the exchange process is slower inIgepal than in AOT reverse micelles with the same water to surfactant ratio. The apparent activation enthalpy and entropy of the exchange process were determined in different alkanes. For the AOT and Igepal reverse micelles the activation parameters increase with the droplet size, but for the AOT systems they do not significantly change with the increase of droplet concentration. For non-percolated systems the activation parameters for Igepal reverse micelles approach those for AOT reverse micelles. This result supports existing suggestions that the mechanism of intermicellar exchange does not differ in principle between reverse micelles stabilized with ionic and nonionic surfactants.

Opis fizyczny
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, Wróblewskiego 15, 93-590, Łódź, Poland,
  • [1] A.S. Bommarius, J.F. Holzwarth, D.I.C. Wang, T.A. Hatton: “Coalescence and solubilizate exchange in a cationic four-component reversed micellar system”,J. Phys. Chem., Vol. 94, (1990), pp. 7232–7239.[Crossref]
  • [2] P.D.I. Fletcher, A.M. Howe, B.H. Robinson: “The kinetics of solubilizate exchange between water droplets of a water-in-oil-microemulsion”,J. Chem. Soc. Faraday Trans. I, Vol. 83, (1987), pp. 985–1006.[Crossref]
  • [3] S.S. Atik, J.K. Thomas: “Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another”,J. Am. Chem. Soc., Vol. 103, (1981), pp. 3543–3550.[Crossref]
  • [4] H. Mays, J. Pochert, G. Ilgenfritz: “Droplet clustering in ionic and nonionic water in oil micremulsions: rate of exchange between clusters studied by phosphorescence”,Langmuir, Vol. 103, (1995), pp. 4347–4354.[Crossref]
  • [5] M. Almgren, R. Johnnsson: “Deactivation of excited species by diffusion-controlled quenching in clusters of reversed micelles”,J. Phys. Chem., Vol. 96, (1992), pp. 9512–9517.[Crossref]
  • [6] J. Lang, A. Jada, A. Malliaris: “Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2-ethylhexyl)sulfosuccinate”J. Phys. Chem., Vol. 92, (1988), pp. 10828–10832.[Crossref]
  • [7] J.C. Fernandez, M. Bisceglia, E. Acosta: “On the birefringence of water-alkane-AOT microemulsions”,Colloids and Surfaces A, Vol. 157, (1999), pp. 35–46.[Crossref]
  • [8] L. Schlicht, J.-H. Spilgies, G. Ilgenfritz: “Dynamics of structure changes in water-in-oil microemulsions: electric birefringence and electric light scattering in percolating systems”,J. Mol. Struct., Vol. 72, (1997), pp. 295–314.
  • [9] S.P. Moulik, G.C. De, B.B. Bhowmik, A.K. Panda: “Physicochemical studies on microemulsions. 6. Phase behavior, dynamics of percolation, and energetics of droplet clustering in water/AOT/n-heptane system influenced by additives (sodium cholate and sodium salicylate)”,J. Phys. Chem. B, Vol. 103, (1999), pp. 7122–7129.
  • [10] H.F. Eicke, W. Meier: “Interfacial charge transport in water-in-oil microemulsions stabilized by ionic-non-ionic surfactant mixtures”,Biophys. Chem., Vol. 58, (1996), pp. 29–37.[Crossref]
  • [11] D.G. Hall: “Conductivity of microemulsions: An improved charge fluctuation model”,J. Phys. Chem., Vol. 94, (1990), pp. 429–430.[Crossref]
  • [12] A. Molski, E. Dutkiewicz: “Electrical conductivity and percolation in water-in-oil microemulsions”,Polish J. Chem., Vol. 70, (1996), pp. 959–971.
  • [13] Y. Feldman, N. Kozlovich, I. Nir, N. Garti, V. Archipov, Z. Idiyatullin, Y. Zuev, V. Fedotov: “Mechanism of transport of charge carriers in the sodium bis(2-ethylhexyl) sulfosuccinate-water-decane microemulsion near the percolation temperature threshold”,J. Phys. Chem., Vol. 100, (1996), pp. 3745–3748.[Crossref]
  • [14] J.L. Gebicki, L. Gebicka: “Intermicellar material exchange and droplet clustering in AOT reverse micellar systems. A pulse radiolysis study of (SCN) 2− radical anion spectra and decay”,J. Phys. Chem. B, Vol. 101, (1997), pp. 10828–10832.[Crossref]
  • [15] R.H. Schuler, L.K. Patterson, E. Janata: “Yield for the scavenging of hydroxyl radicals in the radiolysis of nitrous oxide-saturated aqueous solutions”,J. Phys. Chem., Vol. 84, (1980), pp. 2088–2093.[Crossref]
  • [16] D.C. Steytler, D.L. Sargeant, G.E. Welsh, B.H. Robinson: “Ammonium bis(ethylhexyl) phosphate: A new surfactant for microemulsions”,Langmuir, Vol. 12, (1996), pp. 5312–5318.[Crossref]
  • [17] S. Karolczak, K. Hodyr, M. Polowinski: “Pulse radiolysis system based on ELU-6E linac-II. Development and upgrading the system”,Radiat. Phys. Chem., Vol. 39, (1992), pp. 1–5.
  • [18] J.L. Gębicki and M. Maciejewska: “Is hydrated electron a good probe of the interior of reverse micelles?”,Radiat. Phys. Chem., Vol. 67, (2003), pp. 257–261.[Crossref]
  • [19] T. Kawai, N. Shindo, K. Kon-No: “Solubilized states of water and formation of reversed micelles in polyoxyethylated nonylphenyl ethers in cyclohexane media”,Colloid. Polym. Sci., Vol. 273, (1995), pp. 195–199.[Crossref]
  • [20] J.L. Gebicki, L. Gebicka, J. Kroh: “Electron processes in AOT reverse micelles. Part 1.-Absorption spectra and lifetimes of hydrated electrons as studied by pulse radiolysis”,J. Chem. Soc. Faraday Trans., Vol. 90, (1994), pp. 3411–3414.[Crossref]
  • [21] J.L. Gebicki, P. Bednarek: “Electron processes in AOT reverse micelles. Part 2. Influence of oil phase. Pulse radiolysis study”,J. Mol. Struct., Vol. 555, (2000), pp. 227–234.[Crossref]
  • [22] J. Perkowski, J. Mayer, S. Ledakowicz: “Determination of critical micelle cocncentration of non-ionic surfactants using kinetic approach”,Colloids and Surfaces A, Vol. 101, (1995), pp. 103–106.[Crossref]
  • [23] M. Kahlweit: “Microemulsions”Annu. Rep. Prog. Chem. Sect. C, Vol. 95, (1999), pp. 89–115.[Crossref]
  • [24] A.J. Elliot, F.C. Sopchyshyn: “A pulse radiolysis study of I 2−· and (SCN) 2−· in aqueous solutions over the temperature range 15–90°C”Int. J. Chem. Kinet., Vol. 16, (1984), pp. 1247–1256.[Crossref]
  • [25] L. Schlicht, J.-H. Spilgies, F. Runge, S. Lipgens, S. Boye, D. Schuebel, G. Ilgenfritz: “Temperature-, electric field-and solute-induced percolation in water-in-oil microemulsions”,Biophys. Chem., Vol. 58, (1966), pp. 39–52.[Crossref]
  • [26] A. Maitra: “Determination of size parameters of water-Aerosol OT-oil reverse micelles from their nuclear magnetic resonance data”,J. Phys. Chem., Vol. 88, (1984), pp. 5122–5125.[Crossref]
  • [27] M.V. Genkin, I.V. Logunov, R.M. Davydov, O.V. Krylov: “Radical reactions in AOT reverse micelles. Influence of different factors on the kinetics on intermicellar exchange”,Kinetika i kataliz, Vol. 32, (1991), pp. 336–342 (Russion).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.