PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | 2 | 4 | 720-736
Tytuł artykułu

Hyperfine structure operator in the tensorial form of second quantization

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general tensorial form of the hyperfine interaction operator in the formalism of second quantization is presented. Both diagonal and off-diagnonal matrix elements of the above-mentioned operator are found using an approach based on a combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin) and a generalised graphical technique. This methodology allows us to account for correlation effects efficiently and, therefore, to study the hyperfine interactions in complex many-electron atoms, those with openf-shells included, in a practical manner. All this will lead us to design an efficient program for large scale calculations of hyperfine structure and isotope shift.
Wydawca

Czasopismo
Rocznik
Tom
2
Numer
4
Strony
720-736
Opis fizyczny
Daty
wydano
2004-12-01
online
2004-12-01
Twórcy
  • Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108, Vilnius, Lithuania
  • Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108, Vilnius, Lithuania
Bibliografia
  • [1] L. Armstrong: Theory of the Hyperfine Structure of Free Atoms, Wiley-Interscience, New York, 1971.
  • [2] Z.B. Rudzikas: Theoretical Atomic Spectroscopy (Many-Electron Atom), Cambridge University Press, Cambridge, 1997.
  • [3] J. Dembczynski, B. Arcimowicz, E. Stachowska and H. Rudnicka-Szuba: “Parametrization of two-body perturbation on atomic fine and hyperfine structure. The configuration 6p 3 in the Bismuth atom”, Z. Phys. A-Atoms and Nuclei, Vol. 310, (1983), pp. 27–36. http://dx.doi.org/10.1007/BF01433607[Crossref]
  • [4] P.G.H. Sandars and J. Beck: “Relativistic effects in many-electron hyperfine structure. I. Theory”, Proc. Roy. Soc. London, Vol. 289, (1965), pp. 97–107. http://dx.doi.org/10.1098/rspa.1965.0251[Crossref]
  • [5] I. Lindgren and J. Morrison.Atomic Many-Body Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
  • [6] J. Dembczynski, W. Ertmer, U. Johann and P. Unkel: “A new parametrization method for hyperfine interactions. Determination of nuclear quadrupole moments almost free of Sternheimer corrections”, Z. Phys. A-Atoms and Nuclei, Vol. 321, (1985), pp. 1–13. http://dx.doi.org/10.1007/BF01411937[Crossref]
  • [7] G. Gaigalas, Z. R. Rudzikas and C. F. Fischer: “An efficient approach for spinangular integrations in atomic structure calculations”, J. Phys. B, Vol. 30, (1997), pp. 3747–71. http://dx.doi.org/10.1088/0953-4075/30/17/006[Crossref]
  • [8] G. Gaigalas: “The library of subroutines for calculation of matrix elements of twoparticle operators for many-electron atoms”, Lithuanian Journal of Physics, Vol. 42, (2002), pp. 73–86. [physics/0405072]
  • [9] G. Gaigalas, S. Fritzsche, C.F. Fischer: “Program to calculate pure angular momentum coefficients in jj-coupling”, Comp. Phys. Commun., Vol., 139, (2001), pp. 263–78. http://dx.doi.org/10.1016/S0010-4655(01)00213-2[Crossref]
  • [10] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov and S. G. Porsev, “Using effective operators in calculating the hyperfine structure of atoms”, JETP, Vol. 87, (1998), pp. 885–890. http://dx.doi.org/10.1134/1.558736[Crossref]
  • [11] S.G. Porsev, Y.G. Rakhlina and M.G. Kozlov: “Calculation of hyperfine structure for ytterbium”, J. Phys. B: At. Mol. Phys., Vol. 32, (1999), pp. 1113–1120. http://dx.doi.org/10.1088/0953-4075/32/5/006[Crossref]
  • [12] G. Gaigalas: “Integration over spin-angular variables in atomic physics”, Lithuanian Journal of Physics, Vol. 39, (1999), pp. 79–105. [physics/0405078]
  • [13] P. Jönsson, C.-G. Wahlström and C. F. Fischer, “A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wave functions”, Comp. Phys. Commun., Vol. 74, (1993), pp. 399–414. http://dx.doi.org/10.1016/0010-4655(93)90022-5[Crossref]
  • [14] G. Gaigalas and G. Merkelis: “Application of the method of irreducible tensorial operators to study the expansion of stationary perturbation theory”, Acta Phys. Hungarica, Vol. 61, (1987), pp. 111–114.
  • [15] G. Gaigalas and Z.B. Rudzikas: “On the secondly quantized theory of many-electron atom”, J. Phys. B: At. Mol. Phys., Vol. 29, (1996), pp. 3303–3318. http://dx.doi.org/10.1088/0953-4075/29/15/007[Crossref]
  • [16] G. Gaigalas, Z. R. Rudzikas and C. F. Fischer: “Reduced coefficients (subcoefficients) of fractional parentage for p-, d-, and f-shells.”, Atomic Data and Nuclear Data Tables, Vol. 70, (1998), pp. 1–39. http://dx.doi.org/10.1006/adnd.1998.0782[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.