Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The state of technological systems, such as reactions in a confined volume, are usually monitored with sensors within as well as outside the volume. To achieve the level of precision required by regulators, these data often need to be supplemented with the solution to a mathematical model of the process. The present work addresses an observed, and until now unexplained, convergence problem in the iterative solution in the application of the finite element method to boundary value problems. We use point group theory to clarify the cause of the non-convergence, and give rule problems. We use the appropriate and consistent orders of approximation on the boundary and within the volume so as to avoid non-convergence.
Czasopismo
Rocznik
Tom
Numer
Strony
118-131
Opis fizyczny
Daty
wydano
2003-03-01
online
2003-03-01
Twórcy
autor
- KFKI Atomic Energy Research Institute, H-1525, Budapest 114, POB 49, Hungary, makai@sunserv.kfki.hu
autor
- US Nuclear Regulatory Commission, Washington D.C., USA, yxo@nrc.gov
Bibliografia
- [1] C. B. Carrico, E. E. Lewis, G. Palmiotti, (1994): Matrix Rank in Variational Nodal Approximations, Trans. Am. Nucl. Soc. 70, 162
- [2] L. M. Falicov (1966): Group Theory and Its Physical Applications, The University of Chicago Press, Chicago, IL
- [3] G. J. Habetler and M. A. Martino, (1961): Existence Theorems and Spectral Theory for the Multigroup Diffusion Model, Proc. of the Eleventh Symposium in Applied Mathematics of the American Mathematical Society, vol. XI., Nuclear Reactor Theory, American Mathematical Society, Providence, R. I.
- [4] E. E. Lewis, C. B. Carrico and G. Palmiotti, (1996): Variational Nodal Formulation for the Spherical Harmonics Equations, Nucl. Sci. Eng. 122, 194 (1996)
- [5] Makai, (1996): Group Theory Applied to Boundary Value Problems, Report ANL-FRA-1996-5, Argonne, IL, 1996.
- [6] M. Makai, E. Temesvári and Y. Orechwa: Field Reconstruction from Measured Values Using Symmetries, Int. Conf. Mathematics and Computation, September 2001, Salt Lake City, Utah, 2001
- [7] M. Makai and Y. Orechwa: Symmetries of boundary value problems in mathematical physics, J. Math. Phys, 40, 5247 (1999). http://dx.doi.org/10.1063/1.533028[Crossref]
- [8] G. I. Marchuk and V. I. Lebedev, (1971): Numerical Methods in Neutron Transport Theory, Atomizdat, Moscow, in Russian
- [9] G. Palmiotti et al., (1995): VARIANT, Report ANL-95/40, Argonne, IL
- [10] A. Ralston, (1965): A First Course in Numerical Analysis, McGraw-Hill, New York, NY
- [11] M. Schönert et al.: GAP- Groups Algorithms and Programming, Lelhrstuhl für Mathematik, Rheinish Westfälische Technische Hochschule, Aechen, Germany, (1995).
- [12] F. Shipp and W. R. Wade, (1995): Transforms on Normed Spaces, Janus Pannoius University, Pécs (Hungary)
- [13] G. Strang and G. J. Fix (1973): An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, N. J.
- [14] J. L. Walsh (1923): Am. J. Math., 55, 5. http://dx.doi.org/10.2307/2387224[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475556