PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 3 | 4 | 647-657
Tytuł artykułu

New computer program to calculate the symmetry of molecules

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we, present some MATLAB and GAP programs and use them to find the automorphism group of the Euclidean graph of the C80 fullerence with connectivity and geometry of Ih symmetry point group. It is proved that this group has order 120 and is isomorphic to Ih≊Z2×A5, where Z2 is, a cyclic group of order 2 and A5 is the alternating group on five symbols.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
3
Numer
4
Strony
647-657
Opis fizyczny
Daty
wydano
2005-12-01
online
2005-12-01
Twórcy
autor
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran, ashrafi@kashanu.ac.ir
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran
Bibliografia
  • [1] M. Randié: “On discerning symmetry properties of graphs.”, Chem. Phys. Letters, Vol. 42, (1976), pp. 283–287. http://dx.doi.org/10.1016/0009-2614(76)80365-X[Crossref]
  • [2] M. Randié: “On the recognition of identical graphs representing molecular topology”, J. Chem. Phys., Vol. 60, (1974), pp. 3920–3928. http://dx.doi.org/10.1063/1.1680839[Crossref]
  • [3] K. Balasubramanian: “Graph-Theoretical Perception of Molecular Symmetry”, Chem. Phys. Letters, Vol. 232, (1995), pp. 415–423. http://dx.doi.org/10.1016/0009-2614(94)01382-6[Crossref]
  • [4] K. Balasubramanian: “The Symmetry Groups of Non-rigid Molecules as Generlized Wreath Products and Their Representations”, J. Chem. Phys., Vol. 72, (1980), pp. 665–677. http://dx.doi.org/10.1063/1.438963[Crossref]
  • [5] K. Balasubramanian: “The Symmetry Groups of Chemical Graphs.”, Intern. J. Quantum Chem., Vol. 21, (1982), pp. 411–418. http://dx.doi.org/10.1002/qua.560210206[Crossref]
  • [6] K. Balasubramanian: “Applications of Combinatorics and Graph Theory to Spectroscopy and Quantum Chemistry”, Chem. Rev., Vol. 85, (1985), pp. 599–618. http://dx.doi.org/10.1021/cr00070a005[Crossref]
  • [7] K. Balasubramanian: “Non-rigid Group Theory, Tunneling Splitting and Nuclear Spin Statistics of Water Pentamer: (H2O)5”, J. Phys. Chem., Vol. 108, (2004), pp. 5527–5536.
  • [8] K. Balasubramanian: “Group Theoretical Analysis of Vibrtional Modes and Rovibronic Levels of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 64–68. http://dx.doi.org/10.1016/j.cplett.2004.04.087[Crossref]
  • [9] K. Balasubramanian: “Nuclear Spin Statistics of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 69–74. http://dx.doi.org/10.1016/j.cplett.2004.04.086[Crossref]
  • [10] J.-F. Hao and L. Xu: “The study on automorphism group of ESESOC”, Comput. Chem., Vol. 26, (2002), pp. 119–123. http://dx.doi.org/10.1016/S0097-8485(01)00089-4[Crossref]
  • [11] J. Ivanov: “Molecular symmetry perception”, J. Chem. Inf. Comput. Sci., Vol. 44, (2004), pp. 596–600. http://dx.doi.org/10.1021/ci0341868[Crossref]
  • [12] J. Ivanov and G. Schüürmann: “Simple Algorithms for Determining the Molecular Symmetry”, J. Chem. Inf. Comput. Sci., Vol. 39 (1999), pp. 728–737. http://dx.doi.org/10.1021/ci990322q[Crossref]
  • [13] H.C. Longuet-Higgins: “The symmetry groups of non-rigid molecules”, Mol. Phys., Vol. 6, (1963), pp. 445–460. http://dx.doi.org/10.1080/00268976300100501[Crossref]
  • [14] A.R. Ashrafi: “On Non-Rigid Group Theory For Some Molecules”, MATCH Commun. Math. Comput. Chem., Vol. 53 (2005), pp. 161–174.
  • [15] G.A. Moghani, A.R. Ashrafi and M. Hamadanian: “Symmetry properties of tetraammine platinum (II) with C2v and C4v point groups”, J. Zhejiang Univ. SCI., Vol. 6B(3), (2005), pp. 222–226. http://dx.doi.org/10.1631/jzus.2005.B0222[Crossref]
  • [16] A.R. Ashrafi: “On symmetry properties of molecules”, Chem. Phys. Letters, Vol. 406, (2005), pp. 75–80. http://dx.doi.org/10.1016/j.cplett.2005.02.069[Crossref]
  • [17] G.S. Ezra: Symmetry Properties of Molecules, Lecture Notes in Chemistry, Vol. 28, Springer, Berlin-Hidelberg, 1982.
  • [18] W.C. Herndon: “Chemical applications of graph theory and topology”, In: R.B. King (Ed.): Physical and Theoretical Chemistry, Vol. 28, Elsevier, Amsterdam, 1983, pp. 231–242.
  • [19] N. Trinajstié: Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
  • [20] M. Schönert, H.U. Besche, Th. Breuer, F. Celler, B. Eick, V. Felsch, A. Hulpke, J. Mnich, W. Nickel, G., Pfeiffer, U. Polis, H. Theißen and A. Niemeyer: GAP, Groups, Algorithms and Programming, Lehrstuhl De für Mathematik, RWTH., Aachen, 1995.
  • [21] A.R. Ashrafi and M. Hamadanian: “The Full Non-Rigid Group Theory for Tetraammine Platinum(II)”, Croatica Chem Acta, Vol. 76, (2003), pp. 299–303.
  • [22] D.J. Higham and N.J. Higham: MATLAB Guide, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_BF02475193
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.