PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |
Tytuł artykułu

Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2015-08-08
zaakceptowano
2015-09-29
online
2015-11-11
Twórcy
  • Department of Mathematics, Faculty of Sciences,
    HITEC University, Taxila, Pakistan
  • Department of Mathematics, Faculty of Sciences,
    HITEC University, Taxila, Pakistan
  • Department of Mathematics and Statistics, University
    of Victoria, Victoria, British Columbia V8W 3R4, Canada and
    China Medical University, Taichung 40402, Taiwan, Republic of
    China
  • China University of
    Mining and Technology, Department of Mathematics and Mechanics,
    Xuzhou, Jiangsu 221008, People’s Republic of China
Bibliografia
  • [1] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998).
  • [2] A. Carpinteri, B. Chiaia, P. Cornetti, Comput. Method. Appl.Mech. Engrg. 191, 3 (2001).
  • [3] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001).
  • [4] A. Babakhani, V.G. Daftardar, J. Math. Anal. Appl. 270, 66(2002).
  • [5] G. Jumarie, Appl. Math. Lett. 22, 378 (2009).[Crossref]
  • [6] W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59,1754 (2010).
  • [7] X.-J. Yang, Local Fractional Functional Analysis and its Applications(Asian Academic Publisher, Hong Kong, PRC, 2011).
  • [8] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications(World Science Publisher, New York, USA, 2012).
  • [9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applicationsof Fractional Differential Equations (Elsevier/North-Holloand Science Publishers, Amsterdam, The Netherlands,2006).
  • [10] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013).[Crossref]
  • [11] X.-J. Yang, H.M. Srivastava, J.-H. He, D. Baleanu, Phys. Lett. A.377, 1696 (2013).
  • [12] J. Ahmad, S.T. Mohyud-Din, Proc. Pakistan Acad. Sci. 52, 71(2015).
  • [13] Y.-J. Yang, D. Baleanu, X.J. Yang, Abstr. Appl. Anal. 2013, Art. ID202650 (2013).
  • [14] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys.65, 93 (2013).
  • [15] Y.-J. Hao, H.M. Srivastava, H. Jafari, X.-J. Yang, Adv. Math. Phys.2013, 754248 (2013).
  • [16] J.-H. He, Internat. J. Non-Linear Mech. 34, 708 (1999).
  • [17] Y. Khan, S.T. Mohyud-Din, Internat. J. Nonlinear Sci. Numer. Simulat.12, 1103, (2010).
  • [18] J. Hristov, Therm. Sci. 14, 291 (2010).[Crossref]
  • [19] J. Ahmad, S.T. Mohyud-Din, Plus One. 9, Article ID e109127(2014).[Crossref]
  • [20] H. Jafari, S. Seifi, Commun. Nonlinear Sci. 14, 2006 (2009).[Crossref]
  • [21] S. Zhang, H.-Q. Zhang, Phys. Lett. A, 375, 1069 (2011).
  • [22] Y. Khan, N. Faraz, A. Yildirim, Q.-B.Wu, Comput.Math. Appl. 62,2273 (2011).[Crossref]
  • [23] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculusmodels and numerical methods, (World Scientific, Boston,USA, 2012).
  • [24] C. Li, Y. Wang, Comput. Math. Appl. 57, 1672 (2009).[Crossref]
  • [25] H. Jafari, V.G. Daftardar, J. Comput. Appl.Math. 196, 644 (2006).
  • [26] S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006).
  • [27] S.S. Ray, R.K. Bera, Appl. Math. Comput. 174, 329 (2006).
  • [28] Q. Wang, Appl. Math. Comput. 182, 1048 (2006).
  • [29] H. Jafari, V.G. Daftardar, Appl. Math. Comput. 180, 488 (2006).
  • [30] M. Safari, D.D. Ganji, M. Moslemi, Comput.Math. Appl. 58, 2091(2009).[Crossref]
  • [31] M. El-Shahed, J. Fract. Calc. 24, 23 (2003).
  • [32] X.-J. Yang, D. Baleanu, W.-P. Zhong, Proc. Roman. Acad. Ser. A,14, 127 (2013).
  • [33] X.-J. Yang, D. Baleanu, M. P. Lazareviæ, M. S. Cajiæ, Therm. Sci.2013, DOI: 10.2298/TSCI130717103Y, (2013).[Crossref]
  • [34] A.-M. Yang, Y.-Z. Zhang, Y. Long, Therm. Sci. 17, 707 (2013).[Crossref]
  • [35] C.-F. Liu, S.-S. Kong, S.-J. Yuan, Therm. Sci. 17, 715 (2013).[Crossref]
  • [36] J. Ahmad, S.T. Mohyud-Din, Life Sci. J. 10, 210 (2013).
  • [37] X.-J. Yang, Y.-D. Zhang, Adv. Inform. Tech. Managem. 1, 158(2012).
  • [38] X.-J. Yang, Progr. Nonlinear Sci. 4, 1 (2011).
  • [39] M. Liao, X.-J. Yang, Q. Yan, A New viewpoint to Fourier analysisin fractal space (Advances in Applied mathematics and ApproximationTheory, Springer, 397, 2013).
  • [40] A.-M. Yang, Z.-S. Chen, H.M. Srivastava, X.-J. Yang, Abstr. Appl.Anal. 2013, Article ID 259125 (2013).
  • [41] Y.-J. Yang, D. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2013, ArticleID 202650 (2013).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_wwfaa-2015-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.