PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Triggering RNAi with multifunctional RNA nanoparticles and their delivery

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Proteins are considered to be the key players in structure, function, and metabolic regulation of our bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with small molecules, but another promising method to treat disease is by targeting the corresponding mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) sitespecificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. However, the problem lies within the formulation and delivery of RNAi therapeutics including rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies including multifunctional RNA nanoparticles are being developed. In this mini-review, we will briefly describe some of the current approaches.
Wydawca

Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2015-04-06
zaakceptowano
2015-05-06
online
2015-07-27
Bibliografia
  • ---
  • [1] Social Security. http://www.ssa.gov/planners/lifeexpectancy.html (accessed March 6 2015).
  • [2] Castanotto, D.; Rossi, J. J. The promises and pitfalls ofRNA-interference-based therapeutics. Nature 2009, 457,426-433.
  • [3] Venkataraman, S.; Dirks, R. M.; Ueda, C. T.; Pierce, N. A.Selective cell death mediated by small conditional RNAs. ProcNatl Acad Sci U S A 2010, 107, 16777-16782.[Crossref]
  • [4] Win, M. N.; Smolke, C. D. Higher-order cellular informationprocessing with synthetic RNA devices. Science 2008, 322,456-460.
  • [5] Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K.; Constien,R.; Donoghue, M.; Elbashir, S.; Geick, A.; Hadwiger, P.;Harborth, J., et al. Therapeutic silencing of an endogenousgene by systemic administration of modified siRNAs. Nature2004, 432, 173-178.
  • [6] Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.;Mello, C. C. Potent and specific genetic interference by doublestrandedRNA in Caenorhabditis elegans. Nature 1998, 391,806-811.
  • [7] Davis, M. E.; Zuckerman, J. E.; Choi, C. H.; Seligson, D.; Tolcher,A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAiin humans from systemically administered siRNA via targetednanoparticles. Nature 2010, 464, 1067-1070.
  • [8] World of RNAi Therapeutics. https://www.google.com/maps/d/viewer?oe=UTF8&source=embed&ie=UTF8&msa=0&mid=zr-Ht4ReTX3o.kFQo_CkRb9AQ.
  • [9] Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism,and function. Cell 2004, 116, 281-297.[Crossref]
  • [10] Lee, Y.; Kim, M.; Han, J.; Yeom, K. H.; Lee, S.; Baek, S. H.; Kim,V. N. MicroRNA genes are transcribed by RNA polymerase II. TheEMBO journal 2004, 23, 4051-4060.[Crossref]
  • [11] Gregory, R. I.; Chendrimada, T. P.; Shiekhattar, R.MicroRNA biogenesis: isolation and characterization of themicroprocessor complex. Methods in molecular biology 2006,342, 33-47.
  • [12] Murchison, E. P.; Hannon, G. J. miRNAs on the move: miRNAbiogenesis and the RNAi machinery. Current opinion in cellbiology 2004, 16, 223-229.
  • [13] Lund, E.; Dahlberg, J. E. Substrate selectivity of exportin 5and Dicer in the biogenesis of microRNAs. Cold Spring Harborsymposia on quantitative biology 2006, 71, 59-66.
  • [14] Ji, X. The mechanism of RNase III action: how dicer dices.Current topics in microbiology and immunology 2008, 320,99-116.
  • [15] Macrae, I. J.; Zhou, K.; Li, F.; Repic, A.; Brooks, A. N.; Cande,W. Z.; Adams, P. D.; Doudna, J. A. Structural basis for doublestrandedRNA processing by Dicer. Science 2006, 311, 195-198.
  • [16] Schwarz, D. S.; Hutvagner, G.; Du, T.; Xu, Z.; Aronin, N.;Zamore, P. D. Asymmetry in the assembly of the RNAi enzymecomplex. Cell 2003, 115, 199-208.[Crossref]
  • [17] Khvorova, A.; Reynolds, A.; Jayasena, S. D. Functional siRNAsand miRNAs exhibit strand bias. Cell 2003, 115, 209-216.[Crossref]
  • [18] Lin, S. L.; Chang, D.; Ying, S. Y. Asymmetry of intronicpre-miRNA structures in functional RISC assembly. Gene 2005,356, 32-38.
  • [19] Pratt, A. J.; MacRae, I. J. The RNA-induced silencing complex:a versatile gene-silencing machine. The Journal of biologicalchemistry 2009, 284, 17897-17901.
  • [20] Xiang, S.; Fruehauf, J.; Li, C. J. Short hairpin RNA-expressingbacteria elicit RNA interference in mammals. Naturebiotechnology 2006, 24, 697-702.[Crossref]
  • [21] Tokatlian, T.; Segura, T. siRNA applications in nanomedicine.Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology2010, 2, 305-315.
  • [22] Siolas, D.; Lerner, C.; Burchard, J.; Ge, W.; Linsley, P. S.;Paddison, P. J.; Hannon, G. J.; Cleary, M. A. Synthetic shRNAs aspotent RNAi triggers. Nature biotechnology 2005, 23, 227-231.[Crossref]
  • [23] Whitehead, K. A.; Dahlman, J. E.; Langer, R. S.; Anderson,D. G. Silencing or stimulation? siRNA delivery and theimmune system. Annual review of chemical and biomolecularengineering 2011, 2, 77-96.
  • [24] Wang, Z.; Rao, D. D.; Senzer, N.; Nemunaitis, J. RNAinterference and cancer therapy. Pharmaceutical research 2011,28, 2983-2995.[Crossref]
  • [25] Bramsen, J. B.; Kjems, J. Chemical modification of smallinterfering RNA. Methods in molecular biology 2011, 721,77-103.
  • [26] Bramsen, J. B.; Kjems, J. Development of Therapeutic-GradeSmall Interfering RNAs by Chemical Engineering. Front Genet2012, 3.
  • [27] Bramsen, J. B.; Laursen, M. B.; Damgaard, C. K.; Lena, S. W.;Babu, B. R.; Wengel, J.; Kjems, J. Improved silencing propertiesusing small internally segmented interfering RNAs. Nucleicacids research 2007, 35, 5886-5897.[Crossref]
  • [28] Elbashir, S. M.; Lendeckel, W.; Tuschl, T. RNA interference ismediated by 21- and 22-nucleotide RNAs. Genes Dev 2001, 15,188-200.
  • [29] Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.;Sood, A. K. RNA interference in the clinic: challenges and futuredirections. Nat Rev Cancer 2011, 11, 59-67.[Crossref]
  • [30] Rose, S. D.; Kim, D. H.; Amarzguioui, M.; Heidel, J. D.;Collingwood, M. A.; Davis, M. E.; Rossi, J. J.; Behlke, M. A.Functional polarity is introduced by Dicer processing of shortsubstrate RNAs. Nucleic acids research 2005, 33, 4140-4156.[Crossref]
  • [31] Kim, D. H.; Behlke, M. A.; Rose, S. D.; Chang, M. S.; Choi, S.;Rossi, J. J. Synthetic dsRNA Dicer substrates enhance RNAipotency and efficacy. Nature biotechnology 2005, 23, 222-226.[Crossref]
  • [32] Afonin, K. A.; Grabow, W. W.; Walker, F. M.; Bindewald, E.;Dobrovolskaia, M. A.; Shapiro, B. A.; Jaeger, L. Design andself-assembly of siRNA-functionalized RNA nanoparticles foruse in automated nanomedicine. Nature protocols 2011, 6,2022-2034.[Crossref]
  • [33] Afonin, K. A.; Kasprzak, W. K.; Bindewald, E.; Kireeva, M.;Viard, M.; Kashlev, M.; Shapiro, B. A. In silico design andenzymatic synthesis of functional RNA nanoparticles. Accountsof chemical research 2014, 47, 1731-1741.
  • [34] Afonin, K. A.; Lindsay, B.; Shapiro, B. A. Engineered RNANanodesigns for Applications in RNA Nanotechnology. RNAnanotechnology 2013, 1-15.
  • [35] Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Martins, A. N.;Kasprzak, W. K.; Panigaj, M.; Desai, R.; Santhanam, A.; Grabow,W. W.; Jaeger, L., et al. Multifunctional RNA nanoparticles. Nanoletters 2014, 14, 5662-5671.[Crossref]
  • [36] Guo, P. The emerging field of RNA nanotechnology. Naturenanotechnology 2010, 5, 833-842.[Crossref]
  • [37] Liu, Y. P.; von Eije, K. J.; Schopman, N. C.; Westerink, J. T.;ter Brake, O.; Haasnoot, J.; Berkhout, B. Combinatorial RNAiagainst HIV-1 using extended short hairpin RNAs. Moleculartherapy : the journal of the American Society of Gene Therapy2009, 17, 1712-1723.
  • [38] Nakashima, Y.; Abe, H.; Abe, N.; Aikawa, K.; Ito, Y. BranchedRNA nanostructures for RNA interference. Chem Commun(Camb) 2011.
  • [39] Lee, H.; Lytton-Jean, A. K.; Chen, Y.; Love, K. T.; Park, A. I.;Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.;Jayaraman, M., et al. Molecularly self-assembled nucleicacid nanoparticles for targeted in vivo siRNA delivery. Naturenanotechnology 2012, 7, 389-393.[Crossref]
  • [40] Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulme, J.J.; Isambert, H.; Guo, P.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro,B. A. A Boost for the Emerging Field of RNA Nanotechnology.ACS nano 2011, 5, 3405-3418.[Crossref]
  • [41] Grabow, W. W.; Jaeger, L. RNA self-assembly and RNAnanotechnology. Accounts of chemical research 2014, 47,1871-1880.
  • [42] Bindewald, E.; Afonin, K.; Jaeger, L.; Shapiro, B. A. MultistrandRNA secondary structure prediction and nanostructure designincluding pseudoknots. ACS nano 2011, 5, 9542-9551.[Crossref]
  • [43] Bindewald, E.; Grunewald, C.; Boyle, B.; O‘Connor, M.; Shapiro,B. A. Computational strategies for the automated design of RNAnanoscale structures from building blocks using NanoTiler. JMol Graph Model 2008, 27, 299-308.[Crossref]
  • [44] Bindewald, E.; Hayes, R.; Yingling, Y. G.; Kasprzak, W.;Shapiro, B. A. RNAJunction: a database of RNA junctions andkissing loops for three-dimensional structural analysis andnanodesign. Nucleic acids research 2008, 36, D392-397.
  • [45] Afonin, K. A.; Danilov, E. O.; Novikova, I. V.; Leontis, N. B.TokenRNA: a new type of sequence-specific, label-freefluorescent biosensor for folded RNA molecules. Chembiochem: a European journal of chemical biology 2008, 9, 1902-1905.
  • [46] Rogers, T. A.; Andrews, G. E.; Jaeger, L.; Grabow, W. W.Fluorescent monitoring of RNA assembly and processing usingthe split-spinach aptamer. ACS synthetic biology 2015, 4,162-166.
  • [47] Jaeger, L.; Chworos, A. The architectonics of programmableRNA and DNA nanostructures. Curr Opin Struct Biol 2006, 16,531-543.
  • [48] Jaeger, L.; Leontis, N. B. Tecto-RNA: One-DimensionalSelf-Assembly through Tertiary Interactions This work wascarried out in Strasbourg with the support of grants to N.B.L.from the NIH (1R15 GM55898) and the NIH Fogarty Institute(1-F06-TW02251-01) and the support of the CNRS to L.J.The authors wish to thank Eric Westhof for his support andencouragement of this work. Angewandte Chemie 2000, 39,2521-2524.
  • [49] Jaeger, L.; Westhof, E.; Leontis, N. B. TectoRNA: modularassembly units for the construction of RNA nano-objects.Nucleic acids research 2001, 29, 455-463.[Crossref]
  • [50] Ishikawa, J.; Furuta, H.; Ikawa, Y. RNA tectonics (tectoRNA)for RNA nanostructure design and its application in syntheticbiology. Wiley interdisciplinary reviews. RNA 2013, 4, 651-664.
  • [51] Yamashita, K.; Tanaka, T.; Furuta, H.; Ikawa, Y. TectoRNP:self-assembling RNAs with peptide recognition motifs astemplates for chemical peptide ligation. Journal of peptidescience : an official publication of the European Peptide Society2012, 18, 635-642.
  • [52] Chworos, A.; Severcan, I.; Koyfman, A. Y.; Weinkam, P.;Oroudjev, E.; Hansma, H. G.; Jaeger, L. Building programmablejigsaw puzzles with RNA. Science 2004, 306, 2068-2072.[Crossref]
  • [53] Severcan, I.; Geary, C.; Jaeger, L.; Bindewald, E.; Kasprzak,W.; Shapiro, B. A.: Computational and Experimental RNANanoparticle Design. In Automation in Genomics andProteomics: An Engineering Case-Based Approach; Alterovitz,G., Ramoni, M., Benson, R., Eds.; Wiley Publishing: Hoboken,NJ, 2009; pp 193-220.
  • [54] Severcan, I.; Geary, C.; Verzemnieks, E.; Chworos, A.; Jaeger,L. Square-shaped RNA particles from different RNA folds. Nanoletters 2009, 9, 1270-1277.[Crossref]
  • [55] Geary, C.; Baudrey, S.; Jaeger, L. Comprehensive features ofnatural and in vitro selected GNRA tetraloop-binding receptors.Nucleic acids research 2008, 36, 1138-1152.
  • [56] Geary, C.; Chworos, A.; Jaeger, L. Promoting RNA helicalstacking via A-minor junctions. Nucleic acids research 2011, 39,1066-1080.[Crossref]
  • [57] Geary, C.; Rothemund, P. W.; Andersen, E. S. RNAnanostructures. A single-stranded architecture forcotranscriptional folding of RNA nanostructures. Science 2014,345, 799-804.
  • [58] Ohno, H.; Kobayashi, T.; Kabata, R.; Endo, K.; Iwasa, T.;Yoshimura, S. H.; Takeyasu, K.; Inoue, T.; Saito, H. SyntheticRNA-protein complex shaped like an equilateral triangle.Nature nanotechnology 2011, 6, 116-120.[Crossref]
  • [59] Grabow, W.; Jaeger, L. RNA modularity for synthetic biology.F1000prime reports 2013, 5, 46.
  • [60] Ko, S. H.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C.Synergistic self-assembly of RNA and DNA molecules. Nat Chem2010, 2, 1050-1055.[Crossref]
  • [61] Hao, C.; Li, X.; Tian, C.; Jiang, W.; Wang, G.; Mao, C.Construction of RNA nanocages by re-engineering thepackaging RNA of Phi29 bacteriophage. Nature communications2014, 5, 3890.
  • [62] Yu, J.; Liu, Z.; Jiang, W.; Wang, G.; Mao, C. De novo design of anRNA tile that self-assembles into a homo-octameric nanoprism.Nature communications 2015, 6, 5724.[Crossref]
  • [63] Afonin, K. A.; Cieply, D. J.; Leontis, N. B. Specific RNAself-assembly with minimal paranemic motifs. Journal of theAmerican Chemical Society 2008, 130, 93-102.
  • [64] Afonin, K. A.; Leontis, N. B. Generating new specific RNAinteraction interfaces using C-loops. Journal of the AmericanChemical Society 2006, 128, 16131-16137.
  • [65] Afonin, K. A.; Lin, Y. P.; Calkins, E. R.; Jaeger, L. Attenuation ofloop-receptor interactions with pseudoknot formation. Nucleicacids research 2012, 40, 2168-2180.[Crossref]
  • [66] Osada, E.; Suzuki, Y.; Hidaka, K.; Ohno, H.; Sugiyama, H.; Endo,M.; Saito, H. Engineering RNA-protein complexes with differentshapes for imaging and therapeutic applications. ACS nano2014, 8, 8130-8140.[Crossref]
  • [67] Saito, H.; Inoue, T. RNA and RNP as new molecular parts insynthetic biology. Journal of biotechnology 2007, 132, 1-7.
  • [68] Saito, H.; Inoue, T. Synthetic biology with RNA motifs. Theinternational journal of biochemistry & cell biology 2009, 41,398-404.
  • [69] Shiohara, T.; Saito, H.; Inoue, T. A designed RNA selection:establishment of a stable complex between a target andselectant RNA via two coordinated interactions. Nucleic acidsresearch 2009, 37, e23.[Crossref]
  • [70] Ohno, H.; Inoue, T. Designed Regular Tetragon-ShapedRNA-Protein Complexes with Ribosomal Protein L1 for Bionanotechnologyand Synthetic Biology. ACS nano 2015.
  • [71] Afonin, K. A.; Schultz, D.; Jaeger, L.; Gwinn, E.; Shapiro, B. A.Silver nanoclusters for RNA nanotechnology: steps towardsvisualization and tracking of RNA nanoparticle assemblies.Methods in molecular biology 2015, 1297, 59-66.
  • [72] Yingling, Y. G.; Shapiro, B. A. Computational design of an RNAhexagonal nanoring and an RNA nanotube. Nano letters 2007,7, 2328-2334.[Crossref]
  • [73] Grabow, W. W.; Zakrevsky, P.; Afonin, K. A.; Chworos, A.;Shapiro, B. A.; Jaeger, L. Self-assembling RNA nanorings basedon RNAI/II inverse kissing complexes. Nano letters 2011, 11,878-887.[Crossref]
  • [74] Afonin, K. A.; Kireeva, M.; Grabow, W. W.; Kashlev, M.; Jaeger,L.; Shapiro, B. A. Co-transcriptional assembly of chemicallymodified RNA nanoparticles functionalized with siRNAs. Nanoletters 2012, 12, 5192-5195.[Crossref]
  • [75] Guo, P.; Zhang, C.; Chen, C.; Garver, K.; Trottier, M. Inter-RNAinteraction of phage phi29 pRNA to form a hexameric complexfor viral DNA transportation. Molecular cell 1998, 2, 149-155.[Crossref]
  • [76] Binzel, D. W.; Khisamutdinov, E. F.; Guo, P. Entropy-drivenone-step formation of Phi29 pRNA 3WJ from three RNAfragments. Biochemistry 2014, 53, 2221-2231.
  • [77] Haque, F.; Shu, D.; Shu, Y.; Shlyakhtenko, L. S.; Rychahou, P.G.; Evers, B. M.; Guo, P. Ultrastable synergistic tetravalent RNAnanoparticles for targeting to cancers. Nano today 2012, 7,245-257.[Crossref]
  • [78] Khisamutdinov, E. F.; Jasinski, D. L.; Guo, P. RNA as a boilingresistantanionic polymer material to build robust structureswith defined shape and stoichiometry. ACS nano 2014, 8,4771-4781.[Crossref]
  • [79] Khisamutdinov, E. F.; Li, H.; Jasinski, D. L.; Chen, J.; Fu, J.;Guo, P. Enhancing immunomodulation on innate immunity byshape transition among RNA triangle, square and pentagonnanovehicles. Nucleic acids research 2014, 42, 9996-10004.[Crossref]
  • [80] Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. Thermodynamicallystable RNA three-way junction for constructingmultifunctional nanoparticles for delivery of therapeutics.Nature nanotechnology 2011, 6, 658-667.[Crossref]
  • [81] Shu, Y.; Cinier, M.; Shu, D.; Guo, P. Assembly of multifunctionalphi29 pRNA nanoparticles for specific delivery of siRNAand other therapeutics to targeted cells. Methods 2011, 54,204-214.[Crossref]
  • [82] Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.;Lyubchenko, Y.; Guo, P. Fabrication of 14 different RNAnanoparticles for specific tumor targeting withoutaccumulation in normal organs. Rna 2013, 19, 767-777.
  • [83] Feng, L.; Li, S. K.; Liu, H.; Liu, C. Y.; LaSance, K.; Haque, F.; Shu,D.; Guo, P. Ocular delivery of pRNA nanoparticles: distributionand clearance after subconjunctival injection. Pharmaceuticalresearch 2014, 31, 1046-1058.[Crossref]
  • [84] Reif, R.; Haque, F.; Guo, P. Fluorogenic RNA nanoparticles formonitoring RNA folding and degradation in real time in livingcells. Nucleic acid therapeutics 2012, 22, 428-437.
  • [85] Tarapore, P.; Shu, Y.; Guo, P.; Ho, S. M. Application of phi29motor pRNA for targeted therapeutic delivery of siRNA silencingmetallothionein-IIA and survivin in ovarian cancers. Moleculartherapy : the journal of the American Society of Gene Therapy2011, 19, 386-394.
  • [86] Jasinski, D. L.; Khisamutdinov, E. F.; Lyubchenko, Y. L.; Guo,P. Physicochemically tunable polyfunctionalized RNA squarearchitecture with fluorogenic and ribozymatic properties. ACSnano 2014, 8, 7620-7629.[Crossref]
  • [87] Khaled, A.; Guo, S.; Li, F.; Guo, P. Controllable self-assemblyof nanoparticles for specific delivery of multiple therapeuticmolecules to cancer cells using RNA nanotechnology. Nanoletters 2005, 5, 1797-1808.[Crossref]
  • [88] Afonin, K. A.; Bindewald, E.; Yaghoubian, A. J.; Voss, N.;Jacovetty, E.; Shapiro, B. A.; Jaeger, L. In vitro assembly of cubicRNA-based scaffolds designed in silico. Nature nanotechnology2010, 5, 676-682.[Crossref]
  • [89] Afonin, K. A.; Kasprzak, W.; Bindewald, E.; Puppala, P. S.; Diehl,A. R.; Hall, K. T.; Kim, T. J.; Zimmermann, M. T.; Jernigan, R.L.; Jaeger, L., et al. Computational and experimental characterizationof RNA cubic nanoscaffolds. Methods 2014, 67,256-265.[Crossref]
  • [90] Afonin, K. A.; Viard, M.; Kagiampakis, I.; Case, C. L.;Dobrovolskaia, M. A.; Hofmann, J.; Vrzak, A.; Kireeva, M.;Kasprzak, W. K.; KewalRamani, V. N., et al. Triggering ofRNA Interference with RNA-RNA, RNA-DNA, and DNA-RNANanoparticles. ACS nano 2015, 9, 251-259.[Crossref]
  • [91] Herrera-Carrillo, E.; Berkhout, B. Gene Therapy Strategiesto Block HIV-1 Replication by RNA Interference. Advances inexperimental medicine and biology 2015, 848, 71-95.
  • [92] Herrera-Carrillo, E.; Berkhout, B. The impact of HIV-1 geneticdiversity on the efficacy of a combinatorial RNAi-based genetherapy. Gene therapy 2015.
  • [93] Berkhout, B.; Sanders, R. W. Molecular strategies to designan escape-proof antiviral therapy. Antiviral research 2011, 92,7-14.[Crossref]
  • [94] Low, J. T.; Knoepfel, S. A.; Watts, J. M.; ter Brake, O.; Berkhout,B.; Weeks, K. M. SHAPE-directed discovery of potent shRNAinhibitors of HIV-1. Molecular therapy : the journal of theAmerican Society of Gene Therapy 2012, 20, 820-828.
  • [95] ter Brake, O.; t Hooft, K.; Liu, Y. P.; Centlivre, M.; von Eije, K.J.; Berkhout, B. Lentiviral vector design for multiple shRNAexpression and durable HIV-1 inhibition. Molecular therapy :the journal of the American Society of Gene Therapy 2008, 16,557-564.
  • [96] Afonin, K. A.; Bindewald, E.; Kireeva, M.; Shapiro, B. A.Computational and Experimental Studies of ReassociatingRNA/DNA Hybrids Containing Split Functionalities. Methods inenzymology 2015, 553, 313-334.
  • [97] Afonin, K. A.; Desai, R.; Viard, M.; Kireeva, M. L.; Bindewald,E.; Case, C. L.; Maciag, A. E.; Kasprzak, W. K.; Kim, T.; Sappe,A., et al. Co-transcriptional production of RNA-DNA hybrids forsimultaneous release of multiple split functionalities. Nucleicacids research 2014, 42, 2085-2097.[Crossref]
  • [98] Afonin, K. A.; Viard, M.; Martins, A. N.; Lockett, S. J.; Maciag,A. E.; Freed, E. O.; Heldman, E.; Jaeger, L.; Blumenthal, R.;Shapiro, B. A. Activation of different split functionalities onre-association of RNA-DNA hybrids. Nature nanotechnology2013, 8, 296-304.[Crossref]
  • [99] Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Challenges andopportunities for structural DNA nanotechnology. Naturenanotechnology 2011, 6, 763-772.[Crossref]
  • [100] Hehar, S. S.; Mason, J. D.; Stephen, A. B.; Washington,N.; Jones, N. S.; Jackson, S. J.; Bush, D. Twenty-four hourambulatory nasal pH monitoring. Clinical otolaryngology andallied sciences 1999, 24, 24-25.
  • [101] Yang, W.; Peters, J. I.; Williams, R. O., 3rd. Inhalednanoparticles--a current review. Int J Pharm 2008, 356,239-247.
  • [102] Gondi, C. S.; Rao, J. S. Concepts in in vivo siRNA deliveryfor cancer therapy. Journal of cellular physiology 2009, 220,285-291.
  • [103] Pille, J. Y.; Li, H.; Blot, E.; Bertrand, J. R.; Pritchard, L. L.;Opolon, P.; Maksimenko, A.; Lu, H.; Vannier, J. P.; Soria, J., etal. Intravenous delivery of anti-RhoA small interfering RNAloaded in nanoparticles of chitosan in mice: safety and efficacyin xenografted aggressive breast cancer. Human gene therapy2006, 17, 1019-1026.[Crossref]
  • [104] Rychahou, P.; Haque, F.; Shu, Y.; Zaytseva, Y.; Weiss, H. L.; Lee,E. Y.; Mustain, W.; Valentino, J.; Guo, P.; Evers, B. M. Delivery ofRNA nanoparticles into colorectal cancer metastases followingsystemic administration. ACS nano 2015, 9, 1108-1116.[Crossref]
  • [105] Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance propertiesof nano-sized particles and molecules as imaging agents:considerations and caveats. Nanomedicine 2008, 3, 703-717.[Crossref]
  • [106] Stern, S. T.; Hall, J. B.; Yu, L. L.; Wood, L. J.; Paciotti, G. F.;Tamarkin, L.; Long, S. E.; McNeil, S. E. Translational considerationsfor cancer nanomedicine. Journal of controlled release: official journal of the Controlled Release Society 2010, 146,164-174.
  • [107] Shu, Y.; Shu, D.; Haque, F.; Guo, P. Fabrication of pRNAnanoparticles to deliver therapeutic RNAs and bioactivecompounds into tumor cells. Nature protocols 2013, 8,1635-1659.[Crossref]
  • [108] Dobrovolskaia, M. A.; McNeil, S. E. Immunological propertiesof engineered nanomaterials. Nature nanotechnology 2007, 2,469-478.[Crossref]
  • [109] Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, andpharmacokinetics of polymeric nanoparticles. InternationalJournal of Pharmaceutics 2006, 307, 93-102.
  • [110] Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young,A. Liposomes containing synthetic lipid derivatives ofpoly(ethylene glycol) show prolonged circulation half-lives invivo. Biochim Biophys Acta 1991, 1066, 29-36.
  • [111] Veronese, F. M.; Pasut, G. PEGylation, successful approach todrug delivery. Drug Discovery Today 2005, 10, 1451-1458.[Crossref]
  • [112] Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Uniquefeatures of tumor blood vessels for drug delivery, factorsinvolved, and limitations and augmentation of the effect.Advanced drug delivery reviews 2011, 63, 136-151.[Crossref]
  • [113] Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromoleculardrug delivery to solid tumors: Improvement of tumoruptake, lowering of systemic toxicity, and distinct tumorimaging in vivo. Advanced drug delivery reviews 2013, 65,71-79.[Crossref]
  • [114] Torchilin, V. Tumor delivery of macromolecular drugs basedon the EPR effect. Advanced drug delivery reviews 2011, 63,131-135.[Crossref]
  • [115] Dohmen, C.; Frohlich, T.; Lachelt, U.; Rohl, I.; Vornlocher, H. P.;Hadwiger, P.; Wagner, E. Defined Folate-PEG-siRNA Conjugatesfor Receptor-specific Gene Silencing. Molecular therapy.Nucleic acids 2012, 1, e7.
  • [116] McNamara, J. O., 2nd; Andrechek, E. R.; Wang, Y.; Viles, K. D.;Rempel, R. E.; Gilboa, E.; Sullenger, B. A.; Giangrande, P. H. Celltype-specific delivery of siRNAs with aptamer-siRNA chimeras.Nature biotechnology 2006, 24, 1005-1015.[Crossref]
  • [117] Rockey, W. M.; Hernandez, F. J.; Huang, S. Y.; Cao, S.; Howell,C. A.; Thomas, G. S.; Liu, X. Y.; Lapteva, N.; Spencer, D. M.;McNamara, J. O., et al. Rational truncation of an RNA aptamerto prostate-specific membrane antigen using computationalstructural modeling. Nucleic acid therapeutics 2011, 21,299-314.
  • [118] Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Targeting of drugs andnanoparticles to tumors. J Cell Biol 2010, 188, 759-768.
  • [119] Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle andtargeted systems for cancer therapy. Advanced drug deliveryreviews 2004, 56, 1649-1659.[Crossref]
  • [120] Shim, M. S.; Kwon, Y. J. Efficient and targeted delivery of siRNAin vivo. The FEBS journal 2010, 277, 4814-4827.
  • [121] Hobel, S.; Aigner, A. Polyethylenimines for siRNA and miRNAdelivery in vivo. Wiley interdisciplinary reviews. Nanomedicineand nanobiotechnology 2013, 5, 484-501.
  • [122] Dar, G. H.; Gopal, V.; Rao, N. M. Systemic delivery of stablesiRNA-encapsulating lipid vesicles: optimization, biodistribution,and tumor suppression. Molecular pharmaceutics2015, 12, 610-620.[Crossref]
  • [123] Kim, T.; Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Sparks, S.;Heldman, E.; Grinberg, S.; Linder, C.; Blumenthal, R. P.;Shapiro, B. A. In Silico, In Vitro, and In Vivo Studies Indicatethe Potential Use of Bolaamphiphiles for Therapeutic siRNAsDelivery. Molecular therapy. Nucleic acids 2013, 2, e80.
  • [124] Schlegel, A.; Largeau, C.; Bigey, P.; Bessodes, M.; Lebozec,K.; Scherman, D.; Escriou, V. Anionic polymers for decreasedtoxicity and enhanced in vivo delivery of siRNA complexedwith cationic liposomes. Journal of controlled release : officialjournal of the Controlled Release Society 2011, 152, 393-401.
  • [125] Rudzinski, W. E.; Aminabhavi, T. M. Chitosan as a carrier fortargeted delivery of small interfering RNA. International Journalof Pharmaceutics 2010, 399, 1-11.
  • [126] Tsutsumi, T.; Hirayama, F.; Uekama, K.; Arima, H. Evaluationof polyamidoamine dendrimer/alpha-cyclodextrin conjugate(generation 3, G3) as a novel carrier for small interfering RNA(siRNA). Journal of controlled release : official journal of theControlled Release Society 2007, 119, 349-359.
  • [127] Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.;Breunig, M. Layer-by-layer assembled gold nanoparticles forsiRNA delivery. Nano letters 2009, 9, 2059-2064.[Crossref]
  • [128] Tanaka, T.; Mangala, L. S.; Vivas-Mejia, P. E.; Nieves-Alicea,R.; Mann, A. P.; Mora, E.; Han, H. D.; Shahzad, M. M.; Liu, X.;Bhavane, R., et al. Sustained small interfering RNA delivery bymesoporous silicon particles. Cancer Res 2010, 70, 3687-3696.[Crossref]
  • [129] Safari, D.; Marradi, M.; Chiodo, F.; Th Dekker, H. A.; Shan,Y.; Adamo, R.; Oscarson, S.; Rijkers, G. T.; Lahmann, M.;Kamerling, J. P., et al. Gold nanoparticles as carriers for asynthetic Streptococcus pneumoniae type 14 conjugatevaccine. Nanomedicine 2012, 7, 651-662.[Crossref]
  • [130] Zorko, M.; Langel, U. Cell-penetrating peptides: mechanismand kinetics of cargo delivery. Advanced drug delivery reviews2005, 57, 529-545.[Crossref]
  • [131] Semple, S. C.; Akinc, A.; Chen, J.; Sandhu, A. P.; Mui, B. L.; Cho,C. K.; Sah, D. W.; Stebbing, D.; Crosley, E. J.; Yaworski, E., etal. Rational design of cationic lipids for siRNA delivery. Naturebiotechnology 2010, 28, 172-176.[Crossref]
  • [132] Fattal, E.; Couvreur, P.; Dubernet, C. „Smart“ delivery ofantisense oligonucleotides by anionic pH-sensitive liposomes.Advanced drug delivery reviews 2004, 56, 931-946.[Crossref]
  • [133] Hatakeyama, H.; Ito, E.; Akita, H.; Oishi, M.; Nagasaki, Y.;Futaki, S.; Harashima, H. A pH-sensitive fusogenic peptidefacilitates endosomal escape and greatly enhances the genesilencing of siRNA-containing nanoparticles in vitro and in vivo.Journal of controlled release : official journal of the ControlledRelease Society 2009, 139, 127-132.
  • [134] Kim, T. J.; Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Sparks,S.; Heldman, E.; Grinberg, S., Linder, C.; Blumenthal, R. P.;Shapiro, B. A. In silico, in vitro and in vivo studies indicatethe potential use of bolaamphiphiles for therapeutic siRNAsdelivery. Molecular therapy 2013.
  • [135] Grinberg, S.; Kolot, V.; Linder, C.; Shaubi, E.; Kas‘yanov, V.;Deckelbaum, R. J.; Heldman, E. Synthesis of novel cationicbolaamphiphiles from vernonia oil and their aggregatedstructures. Chemistry and physics of lipids 2008, 153, 85-97.
  • [136] Grinberg, S.; Linder, C.; Heldman, E. Progress in lipid-basednanoparticles for cancer therapy. Critical reviews inoncogenesis 2014, 19, 247-260.[Crossref]
  • [137] Grinberg, S.; Linder, C.; Kolot, V.; Waner, T.; Wiesman, Z.;Shaubi, E.; Heldman, E. Novel cationic amphiphilic derivativesfrom vernonia oil: synthesis and self-aggregation into bilayervesicles, nanoparticles, and DNA complexants. Langmuir 2005,21, 7638-7645.[Crossref]
  • [138] Dakwar, G. R.; Abu Hammad, I.; Popov, M.; Linder, C.;Grinberg, S.; Heldman, E.; Stepensky, D. Delivery of proteinsto the brain by bolaamphiphilic nano-sized vesicles. Journalof controlled release : official journal of the Controlled ReleaseSociety 2012, 160, 315-321.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_rnan-2015-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.