Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Chemical hydrogen storage by methanol: Challenges for the catalytic methanol synthesis from CO2

Treść / Zawartość
Warianty tytułu
Języki publikacji
Methanol is a very promising chemical hydrogen carrier molecule. The well-established industrial methanol synthesis process is a reference case for the desired sustainable synthesis from CO2 and “green” hydrogen. The catalyst employed in this process has been studied intensively and recent results demonstrate significant progress in the understanding of methanol synthesis from CO2, which are surveyed in this contribution. The next step is the employment of this new knowledge basis for the development of new and better catalytic materials. The major challenges are related to synthetic inorganic chemistry for an increased Cu dispersion, defect generation in metallic nanoparticles for a higher concentration of active sites, and surface/interface design between the two major catalyst components Cu and ZnO, which seems to be controlled to some extent by the presence of suitable promoters in the ZnO lattice.

Opis fizyczny
  • Universität Duisburg-Essen,
    Fakultät für Chemie und CENIDE, Universitätsstr. 7, 45141 Essen,
  • ---
  • [1] J.N. Armor, Catalysis and the hydrogen economy, CatalysisLetters, 101 (2005) 131-135.[Crossref]
  • [2] R. Schlögl, The Revolution Continues: Energiewende 2.0,Angewandte Chemie - International Edition, 54 (2015)4436-4439.
  • [3] F. Schüth, Chemical compounds for energy storage, Chemie-Ingenieur-Technik, 83 (2011) 1984-1993.
  • [4] X. Deng, H. Tüysüz, Cobalt-oxide-based materials as wateroxidation catalyst: Recent progress and challenges, ACSCatalysis, 4 (2014) 3701-3714.[Crossref]
  • [5] K.S. Joya, Y.F. Joya, K. Ocakoglu, R. Van De Krol, Water-splittingcatalysis and solar fuel devices: Artificial leaves on themove, Angewandte Chemie - International Edition, 52 (2013)10426-10437.[Crossref]
  • [6] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser,The Mechanism of Water Oxidation: From Electrolysis viaHomogeneous to Biological Catalysis, ChemCatChem, 2 (2010)724-761.[Crossref]
  • [7] F. Schüth, Challenges in hydrogen storage, European PhysicalJournal: Special Topics, 176 (2009) 155-166.
  • [8] T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama, N. Kuriyama,Q. Xu, Boron- and nitrogen-based chemical hydrogen storagematerials, International Journal of Hydrogen Energy, 34 (2009)2303-2311.[Crossref]
  • [9] G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond oil andgas : the methanol economy, Wiley-VCH, Weinheim an derBergstrasse, Germany, 2006.
  • [10] M. Bertau, H. Offermanns, L. Plass, F. Schimdt, H.-J. Wernicke,Methanol: The Basic Chemical and Energy Feedstock of theFuture, Springer, 2013.
  • [11] M. Behrens, M. Armbrüster, Methanol Steam Reforming, inCatalysis for alternative energy generation (eds: L. Guczi, A.Erdohelyi), Springer, 2012.
  • [12] K.S. Lackner, S. Brennan, J.M. Matter, A.H.A. Park, A. Wright,B. Van Der Zwaan, The urgency of the development of CO2capture from ambient air, Proceedings of the National Academyof Sciences of the United States of America, 109 (2012)13156-13162.[Crossref]
  • [13] E. Fiedler, G. Grossmann, D.B. Kersebohm, G. Weiss, C. Witte,Methanol in: Ullmann’s Engcylopedia of Industrial Chemistry,Weily-VCH Weihneim, 2011.
  • [14] J.B. Hansen, P.E.H. Nielsen, Methanol Synthesis, in:Ert, Knötzinger, Schüth, Weitkamp (Eds.) Handbook ofHeterogenous Catalysis, Weily-VCH 2008.
  • [15]; July 2015.
  • [16] J. Skrzypek, M. Lachowska, M. Grzesik, J. Slocznski, P. Nowak,Thermodynamics and kinetics of low pressure methanolsynthesis, The Chemical Engineering Journal, 58 (1995)101-108.
  • [17] W.K. Lewis, P.K. Frolich, Synthesis of Methanol from CarbonMonoxide and Hydrogen, Industrial and Engineering Chemistry,20 (1928).
  • [18] G. Prieto, F. Schüth, The Yin and Yang in the developmentof catalytic processes: Catalysis research and reactionengineering, Angewandte Chemie - International Edition, 54(2015) 3222-3239.[Crossref]
  • [19] F. Seitz, Raw Material Change in the Chemical Industry and theRole of Biomass, in: M. Behrens, A.K. Datye (Eds.) Catalysis forthe Conversion of Biomanss and Its Derivatives, Edition OpenAccess, 2013, p. 15.
  • [20] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A.Whan, Mechanism of Methanol Synthesis from CO2/CO/H2Mixtures over Copper/Zinc Oxide/Alumina Catalysts - Use ofC-14-Labeled Reactants, Applied Catalysis, 30 (1987) 333-338.
  • [21] A.Y. Rozovskii, Kinetika i Kataliz, 21 (1980) 87.
  • [22] F. Studt, M. Behrens, E.L. Kunkes, N. Thomas, S. Zander, A.Tarasov, J. Schumann, E. Frei, J.B. Varley, F. Abild-Pedersen,J.K. Nørskov, R. Schlögl, The Mechanism of CO and CO2Hydrogenation to Methanol over Cu-Based Catalysts,ChemCatChem, 7 (2015) 1105-1111.[Crossref]
  • [23] E.L. Kunkes, M. Behrens, Methanol Chemistry, in: R. Schlögl(Ed.) Chemical Energy Storage, de Gruyter, Berlin, 2013.
  • [24] M. Sahibzada, I.S. Metcalfe, D. Chadwick, Methanol synthesisfrom CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finiteconversions, Journal of Catalysis, 174 (1998) 111-118.
  • [25] J.C. Bart, R.P.A. Sneeden, Catalysis Today, 2 (1987) 1.[Crossref]
  • [26] K. Klier, V. Chatikavanij, R.G. Herman, G.W. Simmons, CatalyticSynthesis of Methanol from CO/H2 IV. The Effect of CarbonDioxide, Journal of Catalysis, 74 (1981) 343-360.
  • [27] J.S. Lee, K.H. Lee, S.Y. Lee, Y.G. Kim, A Comparative-Study ofMethanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst, Journal of Catalysis, 144 (1993) 414-424.
  • [28] O. Martin, J. Perez-Ramirez, New and revisited insights into thepromotion of methanol synthesis catalysts by CO2, CatalysisScience & Technology, 3 (2013) 3343-3352.[Crossref]
  • [29] M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch,T. Ressler, R.W. Fischer, R. Schlögl, Performance Improvementof Nanocatalysts by Promoter-Induced Defects in the SupportMaterial: Methanol Synthesis over Cu/ZnO:Al, Journal of theAmerican Chemical Society, 135 (2013) 6061-6068.
  • [30] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S.Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Discoveryof a Ni-Ga catalyst for carbon dioxide reduction to methanol,Nat Chem, 6 (2014) 320-324.[Crossref]
  • [31] J. Yoshihara, S.C. Parker, A. Schafer, C.T. Campbell, MethanolSynthesis and Reverse Water-Gas Shift Kinetics over CleanPolycrystalline Copper, Catalysis Letters, 31 (1995) 313-324.[Crossref]
  • [32] E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens,Journal of Catalysis, DOI: 10.1016/j.jcat.2014.12.016 (2015).[Crossref]
  • [33] J. Nakamura, J.M. Campbell, C.T. Campbell, Kinetics andMechanism of the Water-Gas Shift Reaction Catalyzed by theClean and Cs-Promoted Cu(110) Surface - a Comparison withCu(111), Journal of the Chemical Society-Faraday Transactions,86 (1990) 2725-2734.[Crossref]
  • [34] P. Kowalik, W. Próchniak, T. Borowiecki, The effect of alkalimetals doping on properties of Cu/ZnO/Al2O3 catalyst for watergas shift, Catalysis Today, 176 (2011) 144-148.
  • [35] T.S. Askgaard, J.K. Nørskov, C.V. Ovesen, P. Stoltze, A Kinetic-Model of Methanol Synthesis, Journal of Catalysis, 156 (1995)229-242.
  • [36] L.C. Grabow, M. Mavrikakis, Mechanism of Methanol Synthesison Cu through CO2 and CO Hydrogenation, ACS Catalysis, 1(2011) 365-384.[Crossref]
  • [37] J. Yoshihara, C.T. Campbell, Methanol synthesis and reversewater-gas shift kinetics over Cu(110) model catalysts: Structuralsensitivity, Journal of Catalysis, 161 (1996) 776-782.
  • [38] I. Nakamura, H. Nakano, T. Fujitani, T. Uchijima, J. Nakamura,Evidence for a special formate species adsorbed on the Cu–Znactive site for methanol synthesis, Surface Science, 402–404(1998) 92-95.
  • [39] Y. Yang, C.A. Mims, R.S. Disselkamp, J.H. Kwak, C.H.F.Peden, C.T. Campbell, (Non)formation of Methanol by DirectHydrogenation of Formate on Copper Catalysts, Journal ofPhysical Chemistry C, 114 (2010) 17205-17211.
  • [40] Y. Yang, C.A. Mims, D.H. Mei, C.H.F. Peden, C.T. Campbell,Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the roleof water, Journal of Catalysis, 298 (2013) 10-17.
  • [41] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D.Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J. Fernández Sanz,J.A. Rodriguez, Highly active copper-ceria and copper-ceriatitaniacatalysts for methanol synthesis from CO2, Science, 345(2014) 546-550.
  • [42] A. Bansode, A. Urakawa, Towards full one-pass conversion ofcarbon dioxide to methanol and methanol-derived products,Journal of Catalysis, 309 (2014) 66-70.
  • [43] S. Zander, E.L. Kunkes, M.E. Schuster, J. Schumann, G.Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, M. Behrens,The Role of the Oxide Component in the Development of CopperComposite Catalysts for Methanol Synthesis, AngewandteChemie International Edition, 52 (2013) 6536-6540.[Crossref]
  • [44] M. Behrens, Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts, Journal of Catalysis, 267 (2009) 24-29.
  • [45] M. Behrens, F. Girgsdies, Structural Effects of Cu/ZnSubstitution in the Malachite–Rosasite System Zeitschrift füranorganische und allgemeine Chemie, 636 (2010) 919-927.
  • [46] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F.Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M.Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, The Active Site ofMethanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts,Science, 336 (2012) 893-897.
  • [47] T. Kandemir, F. Girgsdies, T.C. Hansen, K.-D. Liss, I. Kasatkin,E.L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlögl, M. Behrens,In Situ Study of Catalytic Processes: Neutron Diffraction of aMethanol Synthesis Catalyst at Industrially Relevant Pressure,Angewandte Chemie International Edition, 52 (2013) 5166-5170.[Crossref]
  • [48] M. Behrens, G. Lolli, N. Muratova, I. Kasatkin, M. Havecker,R.N. d’Alnoncourt, O. Storcheva, K. Köhler, M. Muhler, R.Schlögl, The effect of Al-doping on ZnO nanoparticles appliedas catalyst support, Physical Chemistry Chemical Physics, 15(2013) 1374-1381.[Crossref]
  • [49] I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlogl, Role oflattice strain and defects in copper particles on the activity ofCu/ZnO/Al2O3 catalysts for methanol synthesis, AngewandteChemie-International Edition, 46 (2007) 7324-7327.[Crossref]
  • [50] R.N. d’Alnoncourt, X. Xia, J. Strunk, E. Loffler, O. Hinrichsen,M. Muhler, The influence of strongly reducing conditions onstrong metal-support interactions in Cu/ZnO catalysts used formethanol synthesis, Physical Chemistry Chemical Physics, 8(2006) 1525-1538.
  • [51] N.Y. Topsøe, H. Topsøe, On the nature of surface structuralchanges in Cu ZnO methanol synthesis catalysts, Topics inCatalysis, 8 (1999) 267-270.[Crossref]
  • [52] J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsøe, H. Topsøe, B.S.Clausen, In situ investigations of structural changes in Cu/ZnOcatalysts, Journal of Catalysis, 194 (2000) 452-460.
  • [53] T. Fujitani, I. Nakamura, T. Uchijima, J. Nakamura, The kineticsand mechanism of methanol synthesis by hydrogenation ofCO2 over a Zn-deposited Cu(111) surface, Surface Science, 383(1997) 285-298.
  • [54] P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S.Clausen, H. Topsøe, Atom-resolved imaging of dynamic shapechanges in supported copper nanocrystals, Science, 295(2002) 2053-2055.
  • [55] T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M.G.Willinger, Formation of a ZnO Overlayer in Industrial Cu/ZnO/Al2O3 Catalysts Induced by Strong Metal–Support Interactions,Angewandte Chemie International Edition, 54 (2015)4544-4548.[Crossref]
  • [56] S. Kuld, C. Conradsen, P.G. Moses, I. Chorkendorff, J. Sehested,Quantification of zinc atoms in a surface alloy on copper inan industrial-type methanol synthesis catalyst, AngewandteChemie - International Edition, 53 (2014) 5941-5945.[Crossref]
  • [57] C. Holse, C.F. Elkjær, A. Nierhoff, J. Sehested, I. Chorkendorff, S.Helveg, J.H. Nielsen, Dynamic behavior of CuZn nanoparticlesunder oxidizing and reducing conditions, Journal of PhysicalChemistry C, 119 (2015) 2804-2812.
  • [58] V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, M. Muhler,K. Reuter, C. Wöll, Chemical Activity of Thin Oxide Layers:Strong Interactions with the Support Yield a New Thin-FilmPhase of ZnO, Angewandte Chemie International Edition, 52(2013) 11925-11929.[Crossref]
  • [59] G.C. Chinchen, C.M. Hay, H.D. Vandervell, K.C. Waugh, TheMeasurement of Copper Surface-Areas by Reactive FrontalChromatography, Journal of Catalysis, 103 (1987) 79-86.
  • [60] M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens,R. Schlögl, M. Muhler, O. Hinrichsen, Counting of OxygenDefects versus Metal Surface Sites in Methanol SynthesisCatalysts by Different Probe Molecules, Angewandte ChemieInternational Edition, 53 (2014) 7043-7047.[Crossref]
  • [61] S. Kuld, C. Conradsen, P.G. Moses, I. Chorkendorff, J. Sehested,Quantification of Zinc Atoms in a Surface Alloy on Copper inan Industrial-Type Methanol Synthesis Catalyst, AngewandteChemie International Edition, 53 (2014) 5941-5945.[Crossref]
  • [62] M. Behrens, S. Kissner, F. Girsgdies, I. Kasatkin, F. Hermerschmidt,K. Mette, H. Ruland, M. Muhler, R. Schlögl,Knowledge-based development of a nitrate-free synthesisroute for Cu/ZnO methanol synthesis catalysts via formateprecursors, Chemical Communications, 47 (2011) 1701-1703.[Crossref]
  • [63] G. Prieto, J.D. Meeldijk, K.P. De Jong, P.E. De Jongh, Interplaybetween pore size and nanoparticle spatial distribution:Consequences for the stability of CuZn/SiO2 methanolsynthesis catalysts, Journal of Catalysis, 303 (2013) 31-40.
  • [64] G. Prieto, M. Shakeri, K.P. De Jong, P.E. De Jongh, Quantitativerelationship between support porosity and the stability ofpore-confined metal nanoparticles studied on CuZnO/SiO2methanol synthesis catalysts, ACS Nano, 8 (2014) 2522-2531.[Crossref]
  • [65] G. Prieto, J. Zečević, H. Friedrich, K.P. De Jong, P.E. De Jongh,Towards stable catalysts by controlling collective propertiesof supported metal nanoparticles, Nature Materials, 12 (2013)34-39.
  • [66] R. Ahmad, M. Hellinger, M. Buchholz, H. Sezen, L. Gharnati,C. Wöll, J. Sauer, M. Döring, J.D. Grunwaldt, U. Arnold,Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl etherproduction, Catalysis Communications, 43 (2014) 52-56.[Crossref]
  • [67] J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C.Álvarez Galván, R. Schlögl, M. Behrens, Promoting StrongMetal Support Interaction: Doping ZnO for Enhanced Activityof Cu/ZnO:M (M = Al, Ga, Mg) Catalysts, ACS Catalysis, (2015)3260-3270.
  • [68] F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L.Spadaro, Effects of oxide carriers on surface functionality andprocess performance of the Cu-ZnO system in the synthesisof methanol via CO2 hydrogenation, Journal of Catalysis, 300(2013) 141-151.69] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F.Frusteri, Synthesis, characterization and activity pattern ofCu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxideto methanol, Journal of Catalysis, 249 (2007) 185-194.
  • [70] S. Kühl, A. Tarasov, S. Zander, I. Kasatkin, M. Behrens,Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-likecompound: A microstructural, thermoanalytical, and in situ XASstudy, Chemistry - A European Journal, 20 (2014) 3782-3792.[Crossref]
  • [71] J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlögl,M. Behrens, Synthesis and Characterisation of a Highly ActiveCu/ZnO:Al Catalyst, ChemCatChem, 6 (2014) 2889-2897.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.