Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 3 | 124-132
Tytuł artykułu

Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III) ions from Aqueous Solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
Gallium (Ga) is considered an important element in the semiconducting industry and as the lifespan of electronic products decrease annually Ga-containing effluent has been increasing. The present study investigated the use of biodegradable polymer powders, crab shell and chitosan, in the removal of Ga(III) ions from aqueous solution. Ga(III) biosorption was modeled to Lagergren-first, pseudo-second order and the Weber-Morris models. Equilibrium data was modeled to the Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherms to determine the probable biosorption behavior of Ga(III) with the biosorbents. The biosorbents were investigated by Fourier Transform Infrared Spectroscopy, X-ray Diffraction and Scanning Electron Microscopy/Energy Dispersive Spectra analysis.
Słowa kluczowe

Opis fizyczny
  • Da-Yeh University, Department of Environmental Engineering, Changhua 51591, Taiwan (ROC),
  • Da-Yeh University, Department of Environmental Engineering, Changhua 51591, Taiwan (ROC)
  • Da-Yeh University, Department of Environmental Engineering, Changhua 51591, Taiwan (ROC)
  • The University of the West Indies Cave Hill Campus, Department of Biological and Chemical Sciences, 11000 Barbados
  • Chia Nan University of Pharmacy and Science, Department of Environmental Engineering and Science, Tainan 71710, Taiwan
  • 1. Moskalyk, R.R. (2003). Gallium: the backbone of the electronics industry. Min. Eng. 16 921–929. DOI: [Crossref]
  • 2. Bina, G., Niti, M., Zareena, B.I. & Indu, S. (2007). Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy 87, 18–26. DOI: 10.1016/j.hydromet.2007.01.001.[Crossref][WoS]
  • 3. Wu, C.C. & Liu, H.M. (2009). Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry. J. Hazard. Mat. 163, 1239–1245. DOI: 10.1016/j.jhazmat.2008.07.093.[Crossref]
  • 4. Wu, X., Wu, S., Qin, W., Ma, X., Niu, Y., Lai, S., Yang, C., Jiao, F. & Ren, L. (2012). Reductive leaching of gallium from zinc residue. Hydrometallurgy 113–114, 195–199. DOI:10.1016/j.hydromet.2011.11.016.[Crossref][WoS]
  • 5. Yu, H.S. & Liao, W.T. (2011). Gallium: Environmental pollution and Health Effects. In J. Nriagu (Ed.), Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health (pp. 829–833). London, Elsevier.
  • 6. Chowdhury, S., Swenson, B.L,, Wong, M.H. & Mishra, U.K. (2013). Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 1–8. DOI: 10.1088/0268-1242/28/7/074014.[WoS][Crossref]
  • 7. Kramer, D.A. (2003). Gallium. In G.A. Norton & C.G. Groat (Eds.), Mineral Commodity Summaries (pp. 66–67). Reston, VA. U.S. Government Printing Office.
  • 8. Jaskula, B.W. (2014). Mineral commodity summaries 2012: U.S. Geological Survey. Washington, USA: U.S. Government Printing Office.
  • 9. Gutierrez, B.P.C., Pazos, C. & Coca, J. (2002). Solvent extraction equilibrium of gallium from hydrochloric acid solutions by amberlite LA-2. J. Chem. Technol. Biotechnol. 61, 241–245. DOI: 10.1002/jctb.280610310.
  • 10. Mujeriego, R. & Asano, T. (1999). The role of advanced treatment in wastewater reclamation and reuse. Water Sci. Technol. 40(4–5), 1–9. DOI: 10.1016/S0273-1223(99)00479-5.[Crossref]
  • 11. Mahamuni, S.V., Wadgaonkar, P.P. & Anuse, M.A. (2010). Liquid–liquid extraction and recovery of gallium(III) from acid media with 2-octylaminopyridine in chloroform: Analysis of bauxite ore. J. Serbian Chem. Soc. 75(8), 1099–1113. DOI: 10.2298/JSC090630072M.[Crossref][WoS]
  • 12. Huang, C.J., Yang, B.M., Chen, K.S., Chang, C.C. & Kao, C.M. (2011) Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desal. 278(1–3), 203–210. DOI: 10.1016/j.desal.2011.05.032.[Crossref]
  • 13. Srinivasa Rao, P., Kalyani, S., Suresh Reddy, K.V.N. & Krishnaiah, A. (2005). Comparison of biosorption of Nickel(II) and Copper(II) ions from aqueous solutions by Sphaeroplea algae and acid treated Sphaeroplea algae. Sep. Sci. Technol. 40, 3149–3156. DOI: 10.1080/01496390500385350.[Crossref]
  • 14. Volesky, B. (1994). Advances in biosorption of metals: Selection of biomass types FEMS. Microbiol. Rev. 14, 291–302. DOI: 10.1111/j.1574-6976.1994.tb00102.x.[Crossref]
  • 15. Xiao, D.Z., Bin, L., Bo, Zhu, Kuang, R., Kuang, X., Xu, B. & Ma, M. (2010). Crayfish Carapace Micro-powder (CCM): A Novel and Efficient Adsorbent for Heavy Metal Ion Removal from Wastewater. Water 2, 257–272. DOI: 10.3390/w2020257.[Crossref]
  • 16. Varma, A.J., Deshpande, S.V. & Kennedy, J.F. (2004). Metal complexation by chitosan and its derivatives: A review. Carborhydr. Polym. 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005.[Crossref]
  • 17. Song, Q.P., Wang, C., Zhang, Z. & Gao, J. (2014). Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Sep. Sci. Technol. 49(8), 1235–1243. DOI: 10.1080/01496395.2013.872656.[Crossref][WoS]
  • 18. He, Z., Branford-White, C., Zhou, Y., Nie, H. & Zhu, L. (2010). Papain Adsorption on Chitosan-Coated Nylon-Based Immobilized Metal Ion (Cu2+, Ni2+, Zn2+, Co2+) Affinity Membranes. Sep. Sci. Technol. 45(4), 525–534. DOI: 10.1080/01496390903484784.[Crossref]
  • 19. Kalyani, S., Ajithapriya, J., Srinivasa Rao, P. & Krishnaiah, A. (2005). Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Sep. Sci. Technol. 40, 1483–1495. DOI: 10.1080/01496390801940762.[Crossref]
  • 20. Liu, C.X. & Bai, R.B. (2006). Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Memb. Sci. 284, 313–322. DOI: 10.1016/j.memsci.2006.07.045.[Crossref]
  • 21. Cadogan, E.I, Lee, C.H., Popuri, S.R. & Lin, H.Y. (2014). Effect of Solvent on Physico-Chemical Properties and Antibacterial Activity of Chitosan Membranes. Int. J. Polym. Mater. 63(14), 708–715. DOI: 10.1080/00914037.2013.867264.[Crossref]
  • 22. Song, Q., Wang, C., Zhang. Z. & Gao, J. (2014). Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Sep. Sci. Technol. 49(8), 1235–1243. DOI: 10.1080/01496395.2013.872656.[Crossref][WoS]
  • 23. Cadogan, E.I, Lee, C.H., Popuri, S.R. & Lin, H.Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and Characterization. Int. Biodeterior. Biodegrad. 95(A), 232–240. DOI: [WoS][Crossref]
  • 24. Ji, Y., Gao, H., Sun, J. & Fang, C. (2011). Experimental probation on the binding kinetics and thermodynamics of Au-(III) onto Bacillus subtilis. Chem. Eng. J. 172, 122–128. DOI: 10.1016/j.cej.2011.05.077.[WoS][Crossref]
  • 25. Ho, Y.S. & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742. DOI: 10.1016/S0043-1354(99)00232-8.[Crossref]
  • 26. Vijaya, Y., Popuri, S.R., Boddu, V.M. & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for the removal of nickel (II) through adsorption, Carbohydr. Polym. 72, 261–271. DOI: 10.1016/j.carbpol.2007.08.010.[Crossref]
  • 27. Ho, Y.S. & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Trans. Inst. Chem. Eng. Part B. 76,183–188. DOI: 10.1205/095758298529326.[Crossref]
  • 28. Uğurlu, M. (2009). Adsorption of a textile dye onto activated sepiolite. Micropor. Mesopor. Mater. 119, 276–283. DOI: 10.1016/j.micromeso.2008.10.024.[Crossref]
  • 29. Vanleugenhaghe, C., De Zoubov, N. & Pourbaix, M. (1974). Gallium. In M. Pourbaix (Ed.), Atlas of Electrochemical Equilibria in Aqueous Solutions (pp. 428–435). Texas, USA: Pergamon Press Ltd.
  • 30. Ng, C., Losso, J.N., Marshall, W.E. & Rao, R.M. (2002). Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresour. Technol. 85(2), 131–135. DOI: 10.1016/S0960-8524(02)00093-7.[Crossref]
  • 31. Tang, X.W., Wang, Y. & Li, Z.Z. (2009). Removal of Heavy Metal from Aqueous Solution using Chinese Loess Soil. In Advances in Environmental Geotechnics: International Geo-environmental Engineering Symposium, 8–10 September 2009 (pp. 313–319). Hangzhou China: Springer Berlin Heidelberg.
  • 32. Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V. & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22, 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.[Crossref][WoS]
  • 33. Clement, T.P., Sun, Y., Hooker, B.S. & Petersen, J.N. (1998). Modeling Multispecies Reactive Transport in Groundwater Aquifers. Ground Water Monit. R. 18(2), 79–92.
  • 34. Jeppu, G. & Clement, T.P. (2012). A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 129–130, 46–53. DOI: 10.1016/j.jconhyd.2011.12.001.[Crossref][WoS]
  • 35. Turiel, E., Perez-Conde, C. & Martin-Esteban, A. (2003). Assessment of the crossreactivity and binding sites characterization of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm. Analyst. 128(2), 137–141. DOI: 10.1039/B210712K.[Crossref]
  • 36. Umpleby, R.J., Baxter, S.C., Chen, Y., Shah, R.N. & Shimizu, K.D. (2001). Characterization of Molecularly Imprinted Polymers with the Langmuir-Freundlich Isotherm. Analyt. Chem. 73(19), 4584–4591. DOI: 10.1021/ac0105686.[Crossref]
  • 37. Mohaylov, I. & Distin, P.A. (1995). Gallium solvent extraction from acidic solutions with octyl phenyl acid phosphate (OPAP) reagents. Hydrometallurgy 37, 221–234. DOI: 10.1016/0304-386X(94)00045-5.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.