Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 3 | 100-109
Tytuł artykułu

Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendent chlorobenzylidine ring

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper reports the application of poly(azomethinethioamide) (PATA) resin having the pendent chlorobenzylidine ring for the removal of heavy metal ions such as Zn(II) and Ni(II) ions from the aqueous solutions by adsorption technology. Kinetic, equilibrium and thermodynamic models for Zn(II) and Ni(II) ions adsorption were applied by considering the effect of contact time, initial metal ion concentration and temperature data, respectively. The adsorption influencing parameters for the maximum removal of metal ions were optimized. Adsorption kinetic results followed the pseudo-second order kinetic model based on the correlation coefficient (R2) values and closed approach of experimental and calculated equilibrium adsorption capacity values. The removal mechanism of metal ions by PATA was explained with the Boyd kinetic model, Weber and Morris intraparticle diffusion model and Shrinking Core Model (SCM). Adsorption equilibrium results followed the Freundlich model based on the R2 values and error functions. The maximum monolayer adsorption capacity of PATA for Zn(II) and Ni(II) ions removal were found to be 105.4 mg/g and 97.3 mg/g, respectively. Thermodynamic study showed the adsorption process was feasible, spontaneous, and exothermic in nature.

Opis fizyczny
  • SSN College of Engineering, Department of Chemical Engineering, Chennai, 603 110, India
  • SSN College of Engineering, Department of Chemical Engineering, Chennai, 603 110, India
  • SSN College of Engineering, Department of Chemical Engineering, Chennai, 603 110, India
  • SSN College of Engineering, Department of Chemical Engineering, Chennai, 603 110, India
  • AC Tech, Anna University, Department of Applied Science and Technology, Chennai, 600 025 India
  • C.B.M. College, Department of Chemistry, Coimbatore, 641 042, India
  • AC Tech, Anna University, Department of Applied Science and Technology, Chennai, 600 025 India
  • 1. Lombardo, M.V., Videla, M., Calvo, A., Requejo, F.G. & Soler-Illia, G.J.A.A. (2012). Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: adsorption efficiency, functional stability and reusability aspects. J. Hazard. Mater. 223–224, 53–62. DOI: 10.1016/j.jhazmat.2012.04.049.[WoS][Crossref]
  • 2. Kumar, P.S. (2013). Adsorption of Zn(II) ions from aqueous environment by surface modified Strychnos potatorum seeds, a low cost adsorbent. Pol. J. Chem. Technol. 15, 35–41. DOI: 10.2478/pjct-2013-0041.[WoS][Crossref]
  • 3. Awual, M.R., Yaita, T., El-Safty, S.A., Shiwaku, H., Suzuki, S. & Okamoto, Y. (2013). Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330. DOI: 10.1016/j.cej.2013.02.016.[Crossref]
  • 4. Wang, Q., GaO, W., Liu, Y., Yuan, J., Xu, Z., Zeng, Q., Li, Y. & Schroder, M. (2014). Simultaneous adsorption of Cu(II) and SO42− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chem. Eng. J. 250, 55–65. DOI:10.1016/j.cej.2014.03.106.[Crossref][WoS]
  • 5. Awual, M.R., Rahman, I.M.M., Yaita, T., Khaleque, M.A. & Ferdows, M. (2014). pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.[Crossref]
  • 6. Bureau of Indian Standards (BIS). (1994). Methods of sampling and test (physical and chemical) for water and waste water: Part 49 Zinc, IS No. 3025 (Part 49).
  • 7. Bureau of Indian Standards (BIS). (2003). Methods of sampling and test (physical and chemical) for water and waste water: Part 54 Nickel, IS No. 3025 (Part 54).
  • 8. Kumar, P.S., Kirthika, K. & Kumar, K.S. (2009). Bael tree leaves as a natural adsorbent for the removal of zinc(II) ions from industrial effluents. Ads. Sci. Technol. 27, 503–512. DOI: 10.1260/0263-6174.27.5.503.[Crossref]
  • 9. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4, 351–363.
  • 10. Kumar, P.S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167, 122–131. DOI: 10.1016/j.cej.2010.12.010.[Crossref]
  • 11. SenthilKumar, P., Ramalingam, S., Abhinaya, R.V., Kirupha, S.D., Vidhyadevi, T. & Sivanesan, S. (2012). Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. Can. J. Chem. Eng. 90, 973–982. DOI: 10.1002/cjce.20588.[Crossref]
  • 12. Kumar, P.S., Deepthi, A.S.L.S., Bharani, R. & Prabhakaran, C. (2013). Adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by unmodified Strychnos potatorum seeds, Eur. J. Environ. Civ. Eng. 17, 293–314. DOI: 10.1080/19648189.2013.785983.[WoS][Crossref]
  • 13. Anbalagan, K., Kumar, P.S., Gayatri, K.S., Hameed, S.S., Sindhuja, M., Prabhakaran, C. & Karthikeyan, R. (2015). Removal and recovery of Ni(II) ions from synthetic waste-water using surface modified Strychnos potatorum seeds: experimental optimization and mechanism. Des. Water Treat. 53, 171–182. DOI: 10.1080/19443994.2013.837008.[Crossref]
  • 14. Anitha, T., Kumar, P.S. & Kumar, K.S. (2014). Binding of Zn(II) ions to chitosan–PVA blend in aqueous environment: adsorption kinetics and equilibrium studies. Environ. Prog. Sustain. Energy. 34, 15–22. DOI: 10.1002/ep.11943.[Crossref][WoS]
  • 15. Wang, X., Qin, Y. & Li, Z. (2006). Biosorption of zinc from aqueous solutions by rice bran: Kinetics and equilibrium studies, Sep. Sci. Tech. 41, 741–756. DOI: 10.1080/01496390500527951.[Crossref]
  • 16. Mohan, D. & Singh, K.P. (2002). Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Res. 36, 2304–2318. DOI: 10.1016/S0043-1354(01)00447-X.[Crossref]
  • 17. Zhu, Y., Hu, J. & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 221–222, 155–161. DOI: 10.1016/j.jhazmat.2012.04.026.[Crossref][WoS]
  • 18. Annadurai, G., Jung, R.S. & Lee, D.J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Sci. Tech. 47, 185–190.
  • 19. Conrad, K. & Hansen, H.C.B. (2007). Sorption of zinc and lead on coir. Bioresour. Technol. 98, 89–97. DOI: 10.1016/j.biortech.2005.11.018.[Crossref][WoS]
  • 20. King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P. & Prasad, V.S.R.K. (2008). Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetic Studies. J. Hazard. Mater. 152, 324–329. DOI:10.1016/j.jhazmat.2007.06.101.[Crossref]
  • 21. Srivastava, V.C., Mall, I.D. & Mishra, I.M. Modelling individual and competitive adsorption onto cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Sep. Sci. Tech. 41(12), 2685–2710. DOI: 10.1080/01496390600725687.[Crossref]
  • 22. Chubar, N., Carvalho, J.M.R. & Correia, M.J.N. (2003). Cork biomass as biosorbent for Cu(II), Zn(II), Ni(II). Colloids Surf. A Physicochem. Eng. Aspects. 230, 57–65. DOI: 10.1016/j.colsurfa.2003.09.014.[Crossref]
  • 23. Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T.K. & Dutta, B.K. (2010). Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater. 179, 363–372. DOI: 10.1016/j.jhazmat.2010.03.014.[Crossref]
  • 24. Guo, X.Y., Zhang, A.Z. & Shan, X.Q. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134–142. DOI: 10.1016/j.jhazmat.2007.05.065.[Crossref]
  • 25. Dupont, L., Bounanda, J., Dumonceau, J. & Aplincourt, M. (2005). Biosorption of Cu(II) and Zn(II) onto a Lignocellulosic substrate extracted from wheat bran, Environ. Chem. Lett. 2, 165–168. DOI: 10.1007/s10311-004-0095-2.[Crossref]
  • 26. Nie, R., Chang, X., He, Q., Hu, Z. & Li, Z. (2009). Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropolysiloxane resin for selective solidphase extraction and preconcentration of metal ions. J. Hazard. Mater. 169, 203–209. DOI: 10.1016/j.jhazmat.2009.03.084.[WoS][Crossref]
  • 27. Vidhyadevi, T., Murugesan, A., Kalaivani, S.S., Premkumar, M.P., Vinoth Kumar, V., Ravikumar, L. & Sivanesan, S. (2014). Evaluation of equilibrium, kinetic, and thermodynamic parameters for adsorption of Cd2+ ion and methyl red dye onto amorphous poly(azomethinethioamide) resin, Des. Water Treat. 52, 3477–3488. DOI: 10.1080/19443994.2013.801323.[Crossref]
  • 28. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl. 24, 1–39.
  • 29. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.[Crossref]
  • 30. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60.
  • 31. Boyd, G.E., Adamson, A.W. & Myers, L.S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Ame. Chem. Soc. 69, 2836–2848.
  • 32. Levenspiel, O. (1999). Chemical reaction engineering, 3rd Edition, John Wiley & Sons.
  • 33. Lewandowski, Z. & Roe, F. (1994). Communication to the editor: diffusivity of Cu2+ in calcium alginate gel beads. Biotech. Bioeng. 43, 186–187.
  • 34. Veglio, F., Beolchini, F. & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Proc. Biochem. 32, 99–105. DOI: 10.1016/S0032-9592(96)00047-7.[Crossref]
  • 35. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Ame. Chem. Soc. 40, 1361–1403. DOI: 10.1021/ja02242a004.[Crossref]
  • 36. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phy. Chem. 57, 385–470.
  • 37. Temkin, M.J. & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physicochim. URSS 12, 217–225.
  • 38. Dubinin, M.M. & Radushkevich, L.V. (1947). Equation of the characteristic curve of activated charcoal. Chem. Zentralbl. 1, 875–890.
  • 39. Singha, B. & Das, S.K. (2013). Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. B Biointerfaces 107, 97–106. DOI: 10.1016/j.colsurfb.2013.01.060.[Crossref]
  • 40. Nomanbhay, M.S. & Palanisamy, K. (2005). Removal of heavy metal from industrial waste using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 8, 43–53. DOI: 10.2225/vol8-issue1-fulltext-7.[Crossref]
  • 41. Noh, J.S. & Schwarz, J.A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. J. Coll. Inter. Sci. 130, 157–164. DOI: 10.1016/0021-9797(89)90086-6.[Crossref]
  • 42. McKay, G., Otterburn, M.S. & Sweetney, A.G. (1981). The removal of colour from effluent using various adsorbents, III Silica rate process. Water Res. 14, 14–20. DOI:10.1016/0043-1354(80)90037-8.[Crossref]
  • 43. Hall, K.R., Eagleton, L.C., Acrivers, A. & Vermenlem, T. (1966). Pore and solid diffusion kinetics in fixed adsorption constant pattern conditions. Ind. Eng. Chem. Res. 5, 212–223. DOI: 10.1021/i160018a011.[Crossref]
  • 44. Pearce, C.I., Lloyd, J.R. & Guthrie, J.T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58, 179–196. DOI: 10.1016/S0143-7208(03)00064-0.[Crossref]
  • 45. Rieman, W. & Walton, H. (1970). Ion Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry, 38, Pergamon Press, Oxford.
  • 46. Helfferich, F. (1962). Ion Exchange, McGraw-Hill Book Co., New York.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.