Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 2 | 70-76
Tytuł artykułu

Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
A novel polysaccharide-based hydrogel nanocomposite was prepared using grafting of acrylic acid (AA) on to kappa-carrageenan (κC) by incorporating multi-walled carbon nanotube (MCNT). In fact, MCNTs were used as nano-sized reinforcements in the synthesized nanocomposite. Spectroscopy together with morphology proved relatively strong κC-MCNT interaction. Besides, the swelling behavior of the nanocomposite hydrogel was studied. The results showed that in the presence of MCNTs, the equilibrium swelling capacity was decreased. This can be attributed to cross-linking role and hydrophilicity nature of MCNTs. The adsorption performance of hydrogel nanocomposite was also investigated for the removal of crystal violet (CV) as a cationic dye. The effects of some important parameters such as MCNT concentration, pH and contact time on the uptake of CV solution were studied. Equilibrium adsorption isotherm data of the hydrogel exhibited better fit to the Langmuir than to the Freundlich isotherm model. According to this model, the maximum adsorption capacity of κC-based hydrogel nanocomposite was found to be 118 mg . g-1.

Opis fizyczny
  • 1. Buchholz, F.L. & Graham, A.T. (1997). Modern Superabsorbent Polymer Technology, Wiley, New York.
  • 2. Singh, B. & Pal, L. (2008). Development of sterculia gum based wound dressings for use in drug delivery. Eur. Polym. J. 44, 3222-3230. DOI: 10.1016/j.eurpolymj.2008.07.013.[Crossref][WoS]
  • 3. Sorbara, L., Jones, L. & Williams, L.D. (2009). Contact lens induced papillary conjunctivitis with silicone hydrogel lenses. Contac. Len. Anter. Eye 32, 93-96. DOI: 10.1016/j. clae.2008.07.005.[Crossref]
  • 4. Mao, L., Hu, Y., Piao, Y., Chen, X., Xian, W. & Piao, D. (2005). Structure and character of artifi cial muscle model constructed from fi brous hydrogel. Curr. Appl. Phys. 5, 426-428. DOI: 10.1016/j.cap.2004.11.003.[Crossref]
  • 5. Lee, C.T., Kung, P.H. & Lee, Y.D. (2005). Preparation of poly (vinyl alcohol)chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohyd. Polym. 61, 348-354. DOI: 10.1016/j.carbpol.2005.06.018.[Crossref]
  • 6. Wu, J., Wei, W., Lian, Y.W., Su, Z.G. & Ma, G.H. (2007). A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28, 2220-2232. DOI: 10.1016/j.biomaterials.2006.12.024.[Crossref]
  • 7. He, H., Cao, X. & Lee, L.J. (2004). Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Rel. 95, 391-402. DOI: 10.1016/j.jconrel.2003.12.004.[Crossref]
  • 8. Lin, Y., Chen, Q. & Luo, H. (2007). Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohydr. Res. 342, 87-95. DOI: 10.1016/j.carres.2006.11.002.[Crossref]
  • 9. Crini, G. (2005). Recent developments in polysaccharidebased materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38-70. DOI: 10.1016/j.progpolymsci.2004.11.002.[Crossref]
  • 10. Wang, S.F., Shen, L., Zhang, W.D. & Tong, Y.J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067-3072. DOI: 10.1021/bm050378v.[Crossref]
  • 11. Coleman, J.N., Khan, U. & Gunko, K. (2006). Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater.18, 689-706. DOI: 10.1002/adma.200501851.[WoS][Crossref]
  • 12. Estrada, A.C., Daniel-da-Silva, A.L. & Trindade, T. (2013). Photothermally enhanced release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv. 3, 10828-10836. DOI: 10.1039/C3RA40662H.[Crossref]
  • 13. Ajayan, P.M., Stephan, O., Colliex, C. & Rauth, D.T. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212-1214. DOI: 10.1126/science.265.5176.1212.[Crossref]
  • 14. Dai, L. & Mau, A.W.H. (2001). Controlled synthesis and modifi cation of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 13, 899-913. DOI: 10.1002/1521-4095(200107)13:12/13.[Crossref]
  • 15. Baughman, R.H., Zakhidov, A.A. & Heer, W.A. (2002). Carbon nanotubes-the route toward applications. Science 197, 787-792. DOI: org/10.1126/science.1060928.
  • 16. Spitalsky, Z., Tasis, D., Papagelis, K. & Galiotis, C. (2010). Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357-401. DOI: 10.1016/j.progpolymsci.2009.09.003.[Crossref]
  • 17. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58. DOI: 10.1038/354056a0.[Crossref]
  • 18. Allen, A., Cannon, A., Lee, J., King, W.P. & Graham, S. (2006). Flexible microdevices based on carbon nanotubes. J. Micromech. Microeng. 16, 2722-2729. DOI: 10.1088/0960-1317/16/12/027.[Crossref]
  • 19. Sippel-Oakley, J., Wang, H.T., Kang, B.S., Wu, Z., Ren, F., Rinzler, A.G. & Pearton, S.J. (2005). Carbon nanotube fi lms for room temperature hydrogen sensing. Nanotechnology 16, 2218-2221. DOI: 10.1088/0957-4484/16/10/040.[Crossref]
  • 20. Takenobu, T., Takahashi, T., Kanbara, T., Tsukagoshi, K., Aoyagi, Y. & Iwasa, Y. (2006). High-performance transparent fl exible transistors using carbon nanotube fi lms. Appl. Phys. Lett. 88, 033511. DOI: 10.1063/1.2166693.[Crossref]
  • 21. Tang, X., Bansaruntip, S., Nakayama, N., Yenilmez, E., Chang, Y.L. & Wang, Q. (2006). Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632-1636. DOI: 10.1021/nl060613v.[Crossref]
  • 22. Chatterjee, S., Chatterjee, T. & Woo, S.H. (2010). A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresour. Technol. 101, 3853-3858. DOI: 10.1016/j.biortech.2009.12.089.[WoS][Crossref]
  • 23. Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263-266. DOI: 10.1016/S0009- -2614(02)00502-X.[Crossref]
  • 24. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B. & Jia, Z. (2003). Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376, 154-158. DOI: 10.1016/S0009-2614(03)00960-6.
  • 25. Chatterjee, S., Lee, D.S., Lee, M.W. & Woo, S.H. (2009). Enhanced adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour. Technol. 100, 2803-2809. DOI: 10.1016/j.biortech.2008.12.035.[WoS][Crossref]
  • 26. Pourjavadi, A., Hosseini, S.H., Seidi, F. & Soleyman, R. (2012). Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym. Int. 62, 1038-1044. DOI: 10.1002/pi.4389.[Crossref][WoS]
  • 27. Li, S. (2010). Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Bioresource Technol. 101, 2197-2202. DOI: 10.1016/j. biortech.2009.11.044.[Crossref][WoS]
  • 28. Singh, K.P., Gupta, S., Singh, A.K. & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186, 1462-1473. DOI: 10.1016/j. jhazmat.2010.12.032.[WoS][Crossref]
  • 29. Nandi, B.K., Goswami, A., Das, A.K., Mondal, B. & Purkait, M.K. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep. Sci. Technol. 43, 1382-1403. DOI: 10.1080/01496390701885331.[Crossref]
  • 30. Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini, M.T. & Etemadi, H. (2013). Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr. Polym. 98, 358-365. DOI: 10.1016/j.carbpol.2013.05.096.[Crossref]
  • 31. Chatterjee, S., Chatterjee, T., Lim, S.R. &Woo, S.H. (2011). Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution. Biores. Tech. 102, 4402-4409. DOI: 10.1016/j.biortech.2010.12.117.[Crossref]
  • 32. Hosseinzadeh, H., Pourjavadi, A. & Zohuraan-Mehr, M.J. (2004). Modifi ed carrageenan. 2. Hydrolyzed crosslinked κ-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J. Biomater. Sci. Polymer Edn. 15, 1499-1511. DOI: 10.1163/1568562042459715.[Crossref]
  • 33. Sjostrom, E. (1981). Wood Chemistry: Fundamental and Applications, Academic Press, Chap. 9.
  • 34. Park, S.J., Cho, M.S., Lim, S.T., Choi, H.J. & Jhon, M.S. (2003). Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 24, 1070-1073. DOI: 10.1002/marc.200300089.[Crossref]
  • 35. Blond, D., Barron, V., Ruether, M., Ryan, K.P., Nicolosi, V., Blau, W.J. & et al. (2006). Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalised nanotubes. Adv. Funct. Mater.16, 1608-1614. DOI: 0.1002/ adfm.200500855.
  • 36. Yu, J.G., Zhao, X.H., Yang, H., Chen, X.H., Yang, Q., Yu, L.Y., Jiang, J.H. & Chen, X.Q. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 482-483, 241-251. DOI: 10.1016/j.scitotenv.2014.02.129.[Crossref]
  • 37. Yu, J.G., Zhao, X.H., Yu, L.Y., Jiao, F.P., Jiang, J.H. & Chen, X.Q. (2014). Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Ch. 299, 1155-1163. DOI: 10.1007/s10967-013-2818-y.[Crossref][WoS]
  • 38. Crini, G. & Badot, P.M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399-447. DOI: 10.1016/j.progpolymsci.2007.11.001.[WoS][Crossref]
  • 39. Nabid, M.R., Sedghi, R., Sharifi , R., Abdi-Oskooie, H. & Heravi, M.M. (2013). Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran. Polym. J. 22, 85-92. DOI: 10.1007/s13726-012-0106-2.[WoS][Crossref]
  • 40. Piccin, J.S., Gomes, C.S., Feris, L.A. & Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem. Eng. J. 183, 30-38. DOI: 10.1016/j. cej.2011.12.013.[Crossref]
  • 41. Mall, I.D., Srivastava, V.C. & Agarwal, N.K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fl y ash-kinetic study and equilibrium isotherm analyses. Dyes Pigment. 69, 210-223. DOI: 10.1016/j.dyepig.2005.03.013.[Crossref]
  • 42. Mohanty, K., Naidu, J.T., Meikap, B.C. & Biswas, M.N. (2006). Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 45, 5165-5171. DOI: 10.1021/ie060257r.[Crossref]
  • 43. Wang, S. & Zhu, Z.H. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pig. 75, 306-314. DOI: 10.1016/j.dyepig.2006.06.005.[Crossref]
  • 44. Otero, M., Rozada, F., Calvo, L.F., García, A.I. & Morán, A. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pig. 57, 55-65. DOI: 10.1101/gr.4039406.[Crossref]
  • 45. Eren, E. (2009). Removal of basic dye by modifi ed Unye bentonite, Turkey. J. Hazard. Mater. 162, 1355-1363. DOI: 10.1016/j.jhazmat.2008.06.016.[Crossref]
  • 46. Chao, A., Shyu, S., Lin, Y. & Mi, F. (2004). Enzymatic grafting of carboxyl groups on to chitosan-to confer on chitosan the property of a cationic dye adsorbent. Biores. Tech. 91, 157-162. DOI: 10.1016/S0960-8524(03)00171-8.[Crossref]
  • 47. Kaner, D., Sarac, A., Senkal, B.F. (2010). Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin. Environ. Geochem. Health 32, 321-325. DOI: 10.1007/ s10653-010-9304-z.[Crossref][WoS]
  • 48. Monash, P., Niwas, R. & Pugazhenthi, G. (2011). Utilization of ball clay adsorbents for the removal of crystal violet dye from aqueous solution. Clean Techn. Environ. Policy 13, 141-151. DOI: 10.1007/s10098-010-0292-6.[Crossref][WoS]
  • 49. Mahdavinia, G.R., Iravani, S., Zoroufi , S. & Hosseinzadeh, H. (2014). Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran. Polym. J. 23, 335-344. DOI: 10.1007/s13726-014-0229-8. [WoS][Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.