PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 | 110-114
Tytuł artykułu

Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress) and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F) on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N) treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.
Słowa kluczowe
Wydawca

Rocznik
Tom
17
Numer
1
Strony
110-114
Opis fizyczny
Daty
wydano
2015-03-01
online
2015-03-25
Twórcy
  • Islamic Azad University, Birjand branch, Birjand, Iran
autor
  • University of Torbat-e-Heydarieh, Torbat-e-Heydarieh, Iran
  • Islamic Azad University, Birjand branch, Birjand, Iran
  • Mashhad, Iran
Bibliografia
  • 1. Ludlow, M.M. & Muchow, R.C. (1990). A critical evaluations of traits for improving crop yields in water- limited environments. Adv. Agron. 43, 107-153.[Crossref]
  • 2. Razmjoo, K., Heydarizadeh, P. & Sabzalian, M.R. (2008). Effect of salinity and drought stress on growth parameters and essential oil content of Matricaria chamomile. Int. J. Agric. Biol. 10, 451-454. http://www.fspublishers.org, 07-063/ ASB/2008/10-4-451-454.
  • 3. Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi, L. & Rastgoo, M. (2008). Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Ind. Crops Prod. 27, 11-16. http://dx.doi.org/10.1016/j.indcrop.2007.05.002[WoS][Crossref]
  • 4. Khalid, KhA. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 20(4), 289-296.
  • 5. Ahmadian, A., Ghanbari, A., Siahsar, B., Haydari, M., Ramroodi, M. & Mousavinik, S.M. (2011b). Study of Chamomile’s yield and its components under drought stress and organic and inorganic fertilizer using and their residue. J. Microbiol. Antimicrob. 3(2), 23-28.
  • 6. Farahza, K.S., Farahi, A.S. & Sharifi, A. (2002). The effect of drought stress on yield components of Cuminum cyminum. Res. Manuf. J. 54, 42-45.
  • 7. Ucan, K., Killi, F., Gencoglan, C. & Merdun, H. (2007). Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. Field Crops Res. 101, 249-258. http://dx.doi.org/10.1016/j.fcr.2006.11.011 [Crossref]
  • 8. Turner, N.C. (2004). Agronomic option for improving rainfall use efficiency of crops in dryland farming systems. J. Exp. Bot. 55, 2413-2525. DOI: 10.1093/jxb/erh154.[Crossref]
  • 9. Khazaie, H.R., Nadjafi , F. & Bannayan, M. (2008). Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus offi cinalis). Ind. Crops Prod. 27, 315-321. http://dx.doi.org/10.1016/j.indcrop.2007.11.007[Crossref][WoS]
  • 10. Aliabadi Farahani, H., Valadabadi, A.R., Daneshian, J., Shiranirad, A.H. & Khalvati, M.A. (2013). Medicinal and aromatic plants farming under drought conditions. Afr. J. Plant Breed. 1(5), 83-88.
  • 11. Egilla, J.N., Davies, F.T. & Boutton, T.W. (2005). Drought stress influences leaf water content, photosynthesis, and water use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43(1), 135-140. DOI: 10.1007/ s11099-005-5140-2.[Crossref]
  • 12. Peek, M.S. & Foreth, I.N. (2003). Microhabitat responses to resource pulses in the arid land perennial, Cryptanths flava. J. Ecol. 91, 457-466.[Crossref]
  • 13. Karlidag, H., Esitken, A., Turan, M. & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 114, 16-20. http://dx.doi.org/10.1016/j.scienta.2007.04.013[Crossref][WoS]
  • 14. Dong, S., Neilsen, D., Neilsen, G.H. & Fuchigami, L.H. (2005). Foliar N application reduces soil NO3-N leaching loss in apple orchards. Plant Soil. 268, 357-366. DOI: 10.1007/ s11104-004-0333-1.[Crossref]
  • 15. Vashisth, A. & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol. 167, 149-156. http://dx.doi.org/10.1016/j.jplph.2009.08.011[Crossref]
  • 16. Martinez, E., Carbonell, M.V. & Amaya, J.M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro Magnetobiol. 19(3), 271-277. DOI: 10.1081/JBC-100102118.[Crossref]
  • 17. Aladjadjiyan, A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays. J. Cent. Eur. Agric. 3, 89-94.
  • 18. Martinez, E., Carbonell, M.V., Amaya, J.M. & Maqueda, R. (2009). Gemination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int. Agrophys. 23, 45-49.
  • 19. Katsenios, N., Efthimiadou, A., Efthimiadou, P. & Karkanis, A. (2012). Pulsed electromagnetic fields effect in oregano rooting and vegetative propagation: A potential new organic method. Acta Agr. Scand. B-SP. 62 (1), 94-99. DOI: 10.1080/09064710.2011.570374.[Crossref][WoS]
  • 20. Esitken, A. & Turan, M. (2004). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agr. Scand. B-SP. 54, 135-139. DOI: 10.1080/09064710310019748.[Crossref]
  • 21. Levin, M. & Ernst, S.G. (1997). Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetices 18, 255-263. DOI: 10.1002/(SICI)1521-186X.[Crossref]
  • 22. Stange, B.C., Rowland, R.E., Rapley, B.I. & Podd, J.V. (2002). ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 23, 347-354. DOI: 10.1002/ bem.10026.[Crossref]
  • 23. Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys. 24, 321-324.
  • 24. Nair, R., Varghese, S., Nair, B., Maekawa, T., Yoshida, Y. & Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plants. Plant Sci. 179(3), 154-163. http://dx.doi.org/10.1016/j.plantsci.2010.04.012[Crossref][WoS]
  • 25. Joseph, T. & Morrison, M. (2006). Nanotechnology in Agriculture and Food. A Nanoforum report. http://www.nanoforum.org. Institute of Nanotechnology.
  • 26. Navrotsky, A. (2000). Nanomaterials in the environment, agriculture, and technology (NEAT). J. Nanopart. Res. 2, 321-323. DOI: 10.1023/A:1010007023813.[Crossref]
  • 27. Sambhy, V., MacBride, M.M. & Peterson, B.R. (2006). Silver bromide nano particle/ polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798-9808. DOI: 10.1021/ja061442z.[Crossref]
  • 28. Choi, O., Kanjun Deng, K., Kim, N., Ross, L., Surampalli, R.Y. & Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066-3074. http://dx.doi.org/10.1016/j.watres.2008.02.021[Crossref][WoS]
  • 29. van Ieperen, W. (2007). Ion-mediated changes of xylem hydraulic resistance in plant: fact or fiction? Trends Plant Sci. 12, 137-142. http://dx.doi.org/10.1016/j.tplants.2007.03.001[WoS][Crossref]
  • 30. Kumari, M., Mukherjee, A. & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407, 5243-5246. http://dx.doi.org/10.1016/j.scitotenv.2009.06.024[Crossref][WoS]
  • 31. Stampoulis, D., Sinha, S.K. & White, J.C. (2009). Assay- -dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43, 9473-9479. DOI: 10.1021/es901695c.[PubMed][Crossref][WoS]
  • 32. Musante, C. & White, J.C. (2012). Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk- -size particles. Environ Toxicol. 27 (9), 510-517. DOI: 10.1002/ tox.20667.[WoS][Crossref]
  • 33. Ahmadian, A., Tavassoli, A. & Amiri, E. (2011a). The interaction effect of water stress and manure on yield components, essential oil and chemical compositions of cumin (Cuminum cyminum). Afr. J. Agric. Res. 6(10), 2309-2315. DOI: 10.5897/AJAR10.989.[Crossref]
  • 34. De Souza, A., Garcia, D., Sueiro, L., Licea, L. & Porras, E. (2005). Pre-sowing magnetic treatment of tomato seeds: effect on the growth and yield of plants cultivated late in the season. Span. J. Agric. Res. 3(1), 113-122.[Crossref]
  • 35. Rochalska, M., Grabowska, K. & Ziarnik, A. (2008). Impact of low frequency magnetic fields on yield and quality of sugar beet. Int Agrophys. 23, 163-174.
  • 36. Dhawi, F., Al-Khayri, J.M. & Hassan, E. (2009). Static magnetic field influence on elements composition in Date Palm (Phoenix dactylifera L.). Res. J. Agric. Biol. Sci. 5, 161-166. http://www.insinet.net/rjabs/2009/161-166.pdf
  • 37. Hänsch, M. & Emmerling, C. (2010). Effect of silver nanoparticels on the microbiota and enzyme activity in soil. J. Plant Nut. Soil Sci. 173(4), 554-558. DOI: 10.1002/jpln.200900358.[Crossref]
  • 38. Faqenabi, F., Tajbakhsh, M., Bernooshi, I., Saber-Rezaii, M., Tahri, F., Parvizi, S., Izadkhah, M., Hasanzadeh Gorttapeh, A. & Sedqi, H. (2009). The effect of magnetic field on growth, development and yield of safflower and its comparison with other treatments. Res. J. Biol. Sci. 4 (2), 174-178. DOI: rjbsci.2009.174.178.
  • 39. Earl, H. & Davis, R.F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 95 (3), 688-696. DOI: 10.2134/agronj2003.6880.[Crossref]
  • 40. Motamedi-Mirhosseini, L., Mohammadi-Nejad, G., Golkar, P. & Bahrami-Nejad, A. (2011). Evaluation of some drought resistance criteria in Cumin (Cuminum cyminum L.) landraces. Adv. Environ. Biol. 5(8), 2369-2372.
  • 41. Cheruth, A.J., Gopi, R., Sankar, B., Gomathinayagam, M. & Panneerselvam, R. (2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C.R. Biol. 331(1), 42-47. http://dx.doi.org/10.1016/j.crvi.2007.11.003[WoS][Crossref]
  • 42. Faraji, A., Latifi, N., Soltani, A. & Shirani Rad, A.H. (2009). Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric. Water Manage. 96, 132-140. http://dx.doi.org/10.1016/j.agwat.2008.07.014 [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.