PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 | 23-31
Tytuł artykułu

Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of walnut, pistachio and hazelnut shells to remove three monochlorophenols (2-CP, 3-CP and 4-CP) from aqueous solutions has been investigated. To describe the kinetic data pseudo-first and pseudo-second order models were used. The kinetics data were fitted better into the pseudo-second order model with the coefficient of determination values greater than 0.99. The k2 values increased in the order 4-CP < 3-CP < 2-CP. Sorption was also analyzed as a function of solution concentration at equilibrium. The experimental data received were found to be well described by the Freundlich isotherm equation. Effectiveness of chlorophenols removal from water on the walnut, pistachio and hazelnut shells was comparable. Individual differences in sorption of monochlorophenols were also negligible.
Słowa kluczowe
Wydawca

Rocznik
Tom
17
Numer
1
Strony
23-31
Opis fizyczny
Daty
wydano
2015-03-01
online
2015-03-25
Twórcy
  • Military University of Technology, Institute of Chemistry, gen. Sylwester Kaliski 2, 00-908 Warsaw, Poland, kkusmierek@wat.edu.pl
  • Military University of Technology, Institute of Chemistry, gen. Sylwester Kaliski 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21-39. DOI: 10.1016/j.scitotenv.2003.09.015.[Crossref]
  • 2. Armenante, P.M., Kafkewitz, D., Lewandowski, G.A. & Jou, C.J. (1999). Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Res. 33(3), 681-692. DOI: 10.1016/ S0043-1354(98)00255-3.[Crossref]
  • 3. Ahlborg, U.G., Thunberg, T.M. & Spencer, H.C. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact Crit. Rev. Toxicol. 7, 1-35.[Crossref]
  • 4. EC Decision 2455/2001/EC of the European Parliament and the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC.
  • 5. Bhatt, P., Kumar, M.S., Mudliar, S. & Chakrabarti, T. (2007). Biodegradation of chlorinated compounds - A review. Crit. Rev. Environ. Sci. Technol. 37, 165-198. DOI: 10.1080/10643380600776130.[Crossref]
  • 6. Olaniran, A.O. & Igbinosa, E.O. (2011). Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297-1306. DOI: 10.1016/j.chemosphere.2011.04.009.[WoS][Crossref]
  • 7. Pera-Titus, M., Garcia-Molina, V., Banos, M., Jimenez, J. & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Environ. 47, 219-256. DOI: 10.1016/j.apcatb.2003.09.010.[Crossref]
  • 8. Kucharska, M. & Naumczyk, J. (2009). Degradation of selected chlorophenols by advanced oxidation processes. J. Environ. Prot. Eng. 35, 47-55.
  • 9. Munoz, M., de Pedro, Z.M., Casas, J.A. & Rodriguez, J.J. (2011). Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J. Hazard. Mater. 190, 993-1000. DOI: 10.1016/j. jhazmat.2011.04.038.[WoS][Crossref]
  • 10. Kuśmierek, K. & Świątkowski, A. (2012). Removal of 4-chlorophenol from water by advanced oxidation processes based on hydrogen peroxide. Przem. Chem. 91(12), 2422-2424. [In polish].
  • 11. Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T. & Paeng, K.J. (2001). Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem. J. 70, 123-131. DOI: 10.1016/S0026-265X(01)00109-6.[Crossref]
  • 12. Hamdaoui, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters. J. Hazard. Mater. 147, 401-411. DOI: 10.1016/j. jhazmat.2007.01.023.[Crossref][WoS]
  • 13. Wu, F.C., Tseng, R.L., Huang, S.C. & Juang, R.S. (2009). Characteristics of pseudo-second-order kinetic model for liquid- phase adsorption: A mini-review. Chem. Eng. J. 151, 1-9. DOI: 10.1016/j.cej.2009.02.024.[Crossref]
  • 14. Kuśmierek, K., Sankowska, M. & Świątkowski, A. (2014). Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desalin. Water Treat. 52, 178-183. DOI: 10.1080/19443994.2013.780984.[Crossref]
  • 15. Biniak, S., Świątkowski, A., Pakuła, M., Sankowska, M., Kuśmierek, K., & Trykowski, G. (2013). Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes. Carbon 51, 301-312. DOI: http://dx.doi.org/10.1016/j.carbon.2012.08.057.[Crossref]
  • 16. Aksu, Z. & Yener. J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Proc. Biochem. 33(6), 649-655. DOI: 10.1016/S0032-9592(98)00029-6.[Crossref]
  • 17. Aksu, Z. & Yener, J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage. 21, 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.[Crossref]
  • 18. Lin, S.H. & Juang, R.S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low- -cost natural adsorbents: A review. J. Environ. Manage. 90, 1336-1349. DOI: 10.1016/j.jenvman.2008.09.003.[Crossref]
  • 19. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Proc. Biochem. 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008.[Crossref]
  • 20. Ahmaruzzaman, M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interf. Sci. 143, 48-67. DOI: 10.1016/j.cis.2008.07.002[WoS][Crossref]
  • 21. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. Eng. 15, 86-102. DOI/10.1007/s12257-009-0199-4.[WoS][Crossref]
  • 22. Kumar, N.S., Subbaiah, M.V., Reddy, A.S. & Krishnaiah, A. (2009). Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol. 84, 972-981. DOI: 10.1002/jctb.2120.[WoS][Crossref]
  • 23. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem. Eng. J. 168, 562-571. DOI: 10.1016/j.cej.2011.01.023.[Crossref]
  • 24. Radhika, M. & Palanivelu, K. (2006). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent- Kinetics and isotherm analysis. J. Hazard. Mater. B138, 116-124. DOI: 10.1016/j.jhazmat.2006.05.045.[Crossref]
  • 25. Kurniawan, T.A., Waihung, L., Repo, E. & Sillanpaa, M.E.T. (2010). Removal of 4-chlorophenol from contaminated water using coconut shell waste pretreated with chemical agents. J. Chem. Technol. Biotechnol. 85, 1616-1627. DOI: 10.1002/ jctb.2473.[WoS][Crossref]
  • 26. Kazmi, M., Saleemi, A.R., Feroze, N., Yaqoob, A. & Ahmad, S.W. (2013) Removal of phenol from wastewater using activated waste tea leaves. Pol. J. Chem. Tech. 15(2), 1-6. DOI: 10.2478/pjct-2013-0016.[Crossref]
  • 27. Kuśmierek, K., Dąbek, L., Kamiński, W. & Świątkowski, A. (2013). Evaluation of the usefulness of peat for removal of chlorophenols from water solutions. Ochr. Srod. 35(2), 51-55. [In polish].
  • 28. Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 142, 144-152. DOI: 10.1016/j.jhazmat.2006.07.072.[Crossref][WoS]
  • 29. Dogan, M., Abak, H. & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut. 192, 141-153. DOI: 10.1007/s11270-008-9641-z.[Crossref]
  • 30. Altun, T. & Pehlivan, E. (2007). Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond- -shells. Clean 35(6), 601-606. DOI: 10.1002/clen.200700046.[Crossref]
  • 31. Altun, T. & Pehlivan, E. (2008). Biosorption of chromium( VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155, 378-384. DOI: 10.1016/j. jhazmat.2007.11.071.[Crossref]
  • 32. Teixeira, S., Delerue-Matos, C. & Santos, L. (2012). Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells. Environ. Sci. Pollut. Res. 19, 3096-3106. DOI: 10.1007/s11356-012-0853-9.[Crossref]
  • 33. Gala, A. & Sanak-Rydlewska, S. (2012). A comparision of Pb2+ sorption from aqueous solutions on walnut shells and plum stones. Pol. J. Environ. Stud. 20(4), 877-883.
  • 34. Gala, A. & Sanak-Rydlewska, S. (2012). Use of walnut shells for removing Cd2+ ions from aqueous solutions. Przem. Chem. 91(4), 531-536. [In polish].
  • 35. Ferro-Garcia, M.A., Rivera-Utrilla, J., Bautista-Toledo, I. & Moreno-Castilla, C. (1998). Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) ions. Langmuir 14, 1880-1886.[Crossref]
  • 36. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83-94. DOI: 10.1016/j.carbon.2003.09.022.[Crossref]
  • 37. Lagergren, S. (1898). Theorie der sogenannten adsorption geloester stoffe, Vetenskapsakad. Handl. 24, 1-39.
  • 38. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process. Biochem. 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5.[Crossref]
  • 39. Weber Jr., W. & Morris, J. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 18, 31-42.
  • 40. Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.[Crossref]
  • 41. Lorenc-Grabowska, E. Gryglewicz, G. & Diez, M.A. (2013). Kinetics and equilibrium study of phenol adsorption on nitrogen- enriched activated carbons. Fuel 114, 235-243. DOI: http:// dx.doi.org/10.1016/j.fuel.2012.11.056.[Crossref]
  • 42. Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 60, 3973-3393.
  • 43. Freundlich, H.M.F. (1906). Über die adsorption in lösungen. Z. Phys. Chem. 57, 385-470.
  • 44. Akcay, M. & Akcay, G. (2004). The removal of phenolic compounds from aqueous solutions by organophilic bentonite. J. Hazard. Mater. B113, 189-193. DOI: 10.1016/j. jhazmat.2004.06.026.[Crossref][WoS]
  • 45. Monsalvo, V.M., Mohedano, A.F. & Rodriguez, J.J. (2012). Adsorption of 4-chlorophenol by inexpensive sewage sludge- -based adsorbents. Chem. Eng. Res. Des. 90, 1807-1814. DOI: http://dx.doi.org/10.1016/j.cherd.2012.03.018.[Crossref]
  • 46. An, F., Du, R., Wang, X., Wan, M., Dai, X. & Gao, J. (2012). Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent. J. Hazard. Mater. 201-202, 74-81. DOI: 10.1016/j.jhazmat.2011.11.037.[WoS][Crossref]
  • 47. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.P. & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348-356. DOI: 10.1016/j.cej.2009.11.013. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.