PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Open Physics

2015 | 13 | 1 |
Tytuł artykułu

### Erlang Strength Model for Exponential Effects

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
All technical systems have been designed to perform their intended tasks in a specific ambient. Some systems can perform their tasks in a variety of distinctive levels. A system that can have a finite number of performance rates is called a multi-state system. Generally multi-state system is consisted of components that they also can be multi-state. The performance rates of components constituting a system can also vary as a result of their deterioration or in consequence of variable environmental conditions. Components failures can lead to the degradation of the entire multi-state system performance. The performance rates of the components can range from perfect functioning up to complete failure. The quality of the system is completely determined by components. In this article, a possible state for the single component system, where component is subject to two stresses, is considered under stress-strength model which makes the component multi-state. The probabilities of component are studied when strength of the component is Erlang random variables and the stresses are independent exponential random variables. Also, the probabilities of component are considered when the stresses are dependent exponential random variables.
Słowa kluczowe
EN
Wydawca

Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-11-11
zaakceptowano
2015-12-01
online
2015-12-31
Twórcy
autor
• Department
of Statistics, Fırat University, 23119, Elazığ, Turkey
autor
• Department
of Statistics, Fırat University, 23119, Elazığ, Turkey
Bibliografia
• [1] K. E. Ahmed, M. E. Fakry, Z. F. Jaheen. J. Statist. Plann. Infer. 64,297 (1997)
• [2] A. M. Awad, M. K. Gharraf. Commun. Statist. Simul. Computat.15, 189 (1986)
• [3] R. D. Brunelle, K.C. Kapur. IIE Transactions. 31, 1171 (1999)
• [4] S. Chandra, D. B. Owen.Naval Res. Log. Quart. 22, 31 (1975)[Crossref]
• [5] N. Ebrahimi. Naval Res. Log. Quart. 31, 671 (1984)[Crossref]
• [6] E. El-Neweihi, F. Proschan, J. Sethuraman. J.Appl. Probab. 15,675 (1978)[Crossref]
• [7] S. Eryılmaz, J. Multivariate Anal. 99, 1878. (2008)[Crossref]
• [8] S. Eryılmaz. IEEE Trans. Reliab. 59, 644, (2010)
• [9] S. Eryılmaz, F. İşçioğlu. Commun. Statist. Theor. Meth. 40, 547(2011)
• [10] A. İ. Genç. J. Statist. Comput. Simul. 83, 326 (2013)
• [11] I. S. Gradshteyn, I. M. Ryzhik. Table of Integrals, Series andProducts, 6th ed.(Academic Press, California, 2000)
• [12] J. C. Hudson, K. C. Kapur. IIE Transactions. 15, 127 (1983)[Crossref]
• [13] S. Kotz, Y. Lumelskii, M. Pensky. The Stress-Strength Model andits Generalizations. Theory and Applications. (Singapore: WorldScientific, 2003)
• [14] W. Kuo, M. J. Zuo. Optimal Reliability Modeling, Principles andApplications. (New York: John Wiley & Sons, 2003)
• [15] A. W. Marshall, I. Olkin. J. Amer. Statist. Soc. 62, 30 (1966)
• [16] N. A. Mokhlis. Commun. Statist. Theor. Meth, 34, 1643 (2005)
• [17] S. Nadarajah, S. Kotz. Mathematical Problems in Engineering.2006, 1 (2006)
• [18] J. G. Surles, W. J. Padgett. J. Appl. Statist. Sci. 7, 225 (2001)
• [19] M. J. Zuo, Z. Tian, H. Z. Huang. IIE Transactions. 39, 811 (2007)[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory