PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Oscillation of fractional order functional differential equations with nonlinear damping

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we are concerned with the oscillatory behavior of a class of fractional differential equations with functional terms. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a certain variable transformation, by using a generalized Riccati transformation, generalized Philos type kernels, and averaging techniques we establish new interval oscillation criteria. Illustrative examples are also given.
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-11-14
zaakceptowano
2015-11-27
online
2015-12-31
Twórcy
  • Department of health
    Sciences, Uskudar University, Uskudar, Istanbul, Turkey
  • Department of Mathematical Engineering,
    Yildiz Technical University Istanbul, Turkey
  • Department of Mathematics, Amasya University,
    Amasya, Turkey
Bibliografia
  • [1] S. Das, Functional Fractional Calculus for System Identificationand Controls, Springer, New York (2008)
  • [2] K. Diethelm, A. Freed, On the solution of nonlinear fractionalorder differential equations used in the modeling of viscoplasticity,In: F. Keil, W. Mackens, H. Vob, J. Werther (Eds.) Scientific Computing in Chemical Engineering II: ComputationalFluid Dynamics, Reaction Engineering and Molecular Properties,Springer, Heidelberg (1999), 217-224
  • [3] L. Gaul, P. Klein, S. Kempfle, Mech. Syst. Signal Process. 5, 81(1991)
  • [4] W. Glöckle, T. Nonnenmacher, Biophys. J. 68, 46 (1995)
  • [5] F. Mainardi, Fractional calculus: some basic problems in continuumand statistical mechanics, In: A. Carpinteri, F. Mainardi(Eds.), Fractals and Fractional Calculus in Continuum Mechanics,Springer, Vienna (1997), 291-348 .
  • [6] R. Metzler,W. Schick, H. Kilian, T. Nonnenmacher, J. Chem. Phys.103, 7180 (1995)
  • [7] K. Diethelm, The Analysis of Fractional Differential Equations,Springer, Berlin (2010)[WoS]
  • [8] K. Miller, B. Ross, An Introduction to the Fractional Calculus andFractional Differential Equations, Wiley, New York (1993)
  • [9] I. Podlubny, Fractional Differential Equations, Academic Press,San Diego (1999)
  • [10] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications ofFractional Differential Equations, Elsevier, Amsterdam (2006)
  • [11] D. Delbosco, L. Rodino, J. Math. Anal. Appl. 204, 609 (1996)
  • [12] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005)
  • [13] H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput. 180, 700(2006)
  • [14] S. Sun, Y. Zhao, Z. Han, Y. Li, Commun. Nonlinear Sci. Numer.Simul. 17, 4961 (2012)
  • [15] M. Muslim, Math. Comput. Model. 49, 1164 (2009)
  • [16] A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326(2010)
  • [17] F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011)
  • [18] J. Edwards, N. Ford, A. Simpson, J. Comput. Appl.Math. 148, 401(2002)
  • [19] L. Galeone, R. Garrappa, J. Comput. Appl.Math. 228, 548 (2009)
  • [20] J. Trigeassou, N.Maamri, J.A. Sabatier, A. Oustaloup, Signal Process.91, 437 (2011)
  • [21] W. Deng, Nonlinear Anal. 72, 1768 (2010)
  • [22] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory forSecond Order Linear, Half Linear, Super Linear and Sub LinearDynamic Equations, Kluwer Academic Publishers, The Netherlands,672pp. (2002)
  • [23] R.P. Agarwal, M. Bohner, L. Wan-Tong, Nonoscillation and Oscillation:Theory for Functional Differential Equations, MarcelDekker Inc., New York, 376pp. (2004)
  • [24] G. Jumarie, Comput. Math. Appl. 51, 1367 (2006)
  • [25] G. Jumarie, Appl. Math. Lett. 22, 378 (2009)[Crossref]
  • [26] N. Faraz, Y. Khan, H. Jafari, A. Yildirim, M. Madani, J. King. SaudUniv. 23, 413 (2011)
  • [27] B. Lu, Phys. Lett. A 376, 2045 (2012)
  • [28] Q. Feng, F. Meng, Electr. J. Differ. Equ. 2013, 1 (2013)
  • [29] T. Liu, B. Zheng, F. Meng,Math. Probl. Eng. 2013, 830836 (2013)
  • [30] H. Qin, B. Zheng, Scientific World J. 2013, 685621 (2013)
  • [31] Q. Feng, IAENG IJAM 43, IJAM_43_3_09 (2013)
  • [32] S.M. Guo, L. Mei, Y. Li, Y.F. Sun, Phys. Lett. A 376, 407 (2012)
  • [33] S. Zhang, H. Zhang, Phys. Lett. A 375, 1069 (2011)
  • [34] Y. Huang, F. Meng, Appl. Math. Comput. 199, 644 (2008)
  • [35] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, second ed.,Cambridge University Press, Cambridge (1988)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.