PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

A local description of dark energy in terms of classical two-component massive spin-one uncharged fields on spacetimes with torsionful affinities

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is assumed that the two-component spinor formalisms for curved spacetimes that are endowed with torsionful affine connexions can supply a local description of dark energy in terms of classical massive spin-one uncharged fields. The relevant wave functions are related to torsional affine potentials which bear invariance under the action of the generalized Weyl gauge group. Such potentials are thus taken to carry an observable character and emerge from contracted spin affinities whose patterns are chosen in a suitable way. New covariant calculational techniques are then developed towards deriving explicitly the wave equations that supposedly control the propagation in spacetime of the dark energy background. What immediately comes out of this derivation is a presumably natural display of interactions between the fields and both spin torsion and curvatures. The physical properties that may arise directly fromthe solutions to thewave equations are not brought out.
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-05-02
zaakceptowano
2015-11-03
online
2015-11-27
Twórcy
  • Department of Mathematics,
    Centre for Technological Sciences-UDESC, Joinville 89219-
    710 SC, Brazil
Bibliografia
  • [1] A.G. Riess et al., Astro. Jour. 116, 1009 (1998)
  • [2] S. Perlmuter et al., Astro. Jour. 517, 565 (1999)
  • [3] P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)
  • [4] E.J. Copeland et al., Int. J. Mod. Phys. D15, 1753 (2006)[Crossref]
  • [5] A.V. Minkevich, Phys. Lett. B, Vol. 678, Issue 5, 423 (2009)
  • [6] T. Buchert, Gen. Rel. Grav., 40, 467 (2008)[Crossref]
  • [7] C. Beck, M.C. Mackey, Int. J. Mod. Phys. D 17, 71 (2008)[Crossref]
  • [8] A.D. Chernin et al., Astrophys. 50, 405 (2007)
  • [9] A.R. Prasanna, S. Mohanty, Gen. Rel. Grav., 41, 1905 (2009)[Crossref]
  • [10] C.L. Bennett et al., Astrophys. J. Supp. Series 148, 1 (2003)
  • [11] D.N. Spergel et al., Astrophys. J. Supp. Series 148, 148 (2003)
  • [12] T. Padmanabhan, Phys. Rep. 380, 235 (2003)
  • [13] C.G. Böehmer, T. Harko, Eur. Phys. J. C50, 423 (2007)[Crossref]
  • [14] A. Trautman, Encyclopedia ofMathematical Physics, Vol. 2, 189,In: J.P. Françoise, G.L. Naber, S.T. Tsou (Eds.) (Elsevier, Oxford,2006)
  • [15] F.W. Hehl et al., Rev. Mod. Phys., 48, 393 (1976)[Crossref]
  • [16] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 1, (CambridgeUniversity Press, Cambridge, 1984)
  • [17] T.W. Kibble, Jour. Math. Phys. 2, 212 (1961)[Crossref]
  • [18] D.W. Sciama, On the Analogy Between Charge and Spin in GeneralRelativity, In: Recent Developments in General Relativity(Pergamon and PWN, Oxford, 1962)
  • [19] N.J. Poplawski, Phys. Lett. B 694, 181 (2010)
  • [20] C.G. Böehmer, Acta Phys. Polon. B 36, 2841 (2005)
  • [21] I.L. Shapiro, Phys. Rep. 357, 113 (2002)
  • [22] V. De Sabbata, Astrophysics and Space Science Vol. 158, 347(Kluwer Academic Publishers, Belgium, 1989)
  • [23] S. Capozziello et al., Eur. Phys. Jour. C, 72, 1908 (2012)[Crossref]
  • [24] T.P. Sotiriou, S. Liberat, Ann. Phys. 322, 935 (2007)
  • [25] T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)
  • [26] L. Infeld, B.L. Van der Waerden, Sitzber. Akad. Wiss., Physikmath.Kl. 9, 380 (1933)
  • [27] H. Weyl, Z. Physik 56, 330 (1929)
  • [28] J.G. Cardoso, Czech. J. Phys. B 4, 401 (2005)[Crossref]
  • [29] J.G. Cardoso, Adv. Appl. Clifford Algebras 22, 985 (2012)
  • [30] R. Penrose, Ann. Phys. 10, 171 (1960)[Crossref]
  • [31] L. Witten, Phys. Rev. 1, 357 (1959)
  • [32] J.G. Cardoso, Acta Phys. Polon. 38, 2525 (2007)
  • [33] J.G. Cardoso, Wave Equations for Invariant Infeld-van der WaerdenWave Functions for Photons and Their Physical Significance, In: Photonic Crystals, Optical Properties, Fabrication,W.L. Dahl (Ed.) (Nova Science Publishers Inc., New York, 2010)
  • [34] H. Jehle, Phys. Rev. 75, 1609 (1949)
  • [35] W.L. Bade, H. Jehle, Rev. Mod. Phys. 25, 714 (1953)[Crossref]
  • [36] P.G. Bergmann, Phys. Rev. 107, 624 (1957)
  • [37] E.T. Newman, R. Penrose, Jour. Math. Phys. 3, 566 (1962)[Crossref]
  • [38] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 2 (CambridgeUniversity Press, Cambridge, 1986)
  • [39] J.G. Cardoso, EPJ B 130, 10 (2015)
  • [40] J. Plebanski, Acta Phys. Polon. 27, 361 (1965)
  • [41] R. Penrose, Found. Phys. 13, 325 (1983)[Crossref]
  • [42] A. Trautman, Symposia Mathematica 12, 139 (1973)
  • [43] A. Trautman, Nature (Phys. Sci.) 242, 7 (1973)
  • [44] A. Trautman, Annals N. Y. Acad. Sci. 262, 241 (1975)
  • [45] R. Geroch, Jour. Math. Phys. 9, 1739 (1968)[Crossref]
  • [46] R. Geroch, Jour. Math. Phys. 11, 343 (1970)[Crossref]
  • [47] M. Burgess, Classical Covariant Fields, Cambridge Monographson Mathematical Physics (Cambridge University Press, Cambridge,2005)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.