PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Multivariate Padé Approximations For Solving Nonlinear Diffusion Equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, multivariate Padé approximation is applied to power series solutions of nonlinear diffusion equations. As it is seen from tables, multivariate Padé approximation (MPA) gives reliable solutions and numerical results.
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-09-02
zaakceptowano
2015-10-27
online
2015-11-24
Twórcy
autor
  • Department of Mathematics,
    Faculty of Science and Letters, Batman University, 72060 - Batman,
    Turkey
Bibliografia
  • [1] E.Celik, E. Karaduman and M. Bayram, Numerical Solutions of Chemical Differential- Algebraic Equations, Applied Mathematics andComputation (2003),139 (2-3),259-264.
  • [2] E. Celik, M. Bayram, Numerical solution of differential–algebraic equation systems and applications, Applied Mathematics and Computation(2004), 154 (2) 405-413.
  • [3] V. Turut and N Guzel., Comparing Numerical Methods for Solving Time-Fractional Reaction-Diffusion Equations, ISRNMathematical Analysis(2012), Doi:10.5402/2012/737206.[Crossref]
  • [4] V. Turut, N. Güzel, Multivariate Padé approximation for solving partial differential equations of fractional order”,Abstract and AppliedAnalysis (2013), Doi:10.1155/2013/746401.[Crossref]
  • [5] V. Turut, E. Çelik, M. Yiğider, Multivariate Padé approximation for solving partial differential equations (PDE), International Journal ForNumerical Methods In Fluids (2011), 66(9):1159-1173.
  • [6] V. Turut,” Application of Multivariate Padé approximation for partial differential equations”,Batman University Journal of Life Sciences(2012), 2(1): 17–28.
  • [7] V. Turut,” Numerical approximations for solving partial differential equations with variable coeflcients” Applied and ComputationalMathematics. (2013), 2 (1),19-23
  • [8] A. Sadighi, D.D. Ganji, Exact solutions of nonlinear diffusion equations by variational iteration method, Computers Mathematics withApplications (2007), 54: 1112-1121.
  • [9] J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng.(1998), 167: 57-68.
  • [10] J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear. Mech. (1999), 34:699-708.
  • [11] J.H. He, Variational iteration method-some recent results and new interpretations, J. Comput. Appl. Math. (2007), 207: 3-17.[WoS]
  • [12] J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. (2007), 54: 881-894.[WoS]
  • [13] J.H. He, G.-C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Sci. Lett. A (2010), 1: 1-30.
  • [14] A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis, Elsevier Science Publishers B.V. (1987), Amsterdam.
  • [15] A.M. Wazwaz, Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Applied Mathematics and Computation,(2001), 109-122.[Crossref]
  • [16] Ph. Guillaume, A. Huard, Multivariate Padé Approximants, Journal of Computational and Applied Mathematics, (2000), 121: 197-219.
  • [17] J.S.R. Chisholm, Rational approximants defined from double power series, Math. Comp. (1973) 27: 841-848.[Crossref]
  • [18] D. Levin, General order Padé-type rational approximants defined from double power series, J. Inst. Math. Appl. (1976) 18: 395-407.[Crossref]
  • [19] A. Cuyt, Multivariate Padé approximants, J. Math. Anal. Appl. (1983) 96: 283-293.[Crossref]
  • [20] A. Cuyt, A Montessus de Ballore Theorem for Multivariate Padé Approximants, J. Approx. Theory (1985) 43: 43-52.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.