PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Mixed spectral AKNS hierarchy from linear isospectral problem and its exact solutions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the AKNS isospectral problem and its corresponding time evolution are generalized by embedding three coefficient functions. Starting from the generalizedAKNS isospectral problem, a mixed spectralAKNS hierarchy with variable coefficients is derived. Thanks to the selectivity of these coefficient functions, the mixed spectral AKNS hierarchy contains not only isospectral equations but also nonisospectral equations. Based on a systematic analysis of the related direct and inverse scattering problems, exact solutions of the mixed spectral AKNS hierarchy are obtained through the inverse scattering transformation. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. This paper shows that the AKNS spectral problem being nonisospectral is not a necessary condition to construct a nonisospectral AKNS hierarchy and that the inverse scattering transformation can be used for solving some other variable-coefficient mixed hierarchies of isospectral equations and nonisospectral equations.
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-03-07
zaakceptowano
2015-10-01
online
2015-11-23
Twórcy
autor
  • School of Mathematics
    and Physics, Bohai University, Jinzhou 121013, PR China
autor
  • School of Mathematics and Statistics, Kashgar University,
    Kashgar 844066, Peoples’s Republic of China
Bibliografia
  • [1] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev.Lett. 19, 1095 (1967)[Crossref]
  • [2] R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)[Crossref]
  • [3] M.R. Miurs, Bäcklund Transformation, (Berlin, Springer, 1978)
  • [4] X.Lü, F. Lin, F. Qi, Appl. Math. Model. 39, 3221 (2015)[Crossref]
  • [5] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 24, 522 (1983)[Crossref]
  • [6] M.L. Wang, Phys. Lett. A 213, 279 (1996)
  • [7] H.P. Zhu, Nonlinear Dyn. 76, 1651 (2014)
  • [8] C.Q. Dai, Y.Y. Wang, X.F. Zhang, Opt. Express 22, 29862 (2014)[Crossref]
  • [9] Y.Y. Wang, C.Q. Dai, X.G. Wang, Nonlinear Dyn. 77, 1323 (2014)
  • [10] Y.X. Chen, Nonlinear Dyn. 79, 427 (2015)
  • [11] E.G. Fan, Phys. Lett. A 300, 243 (2002)
  • [12] J.H. He, X.H. Wu, Chaos Soliton. Fract. 30, 700 (2006)[Crossref]
  • [13] S. Zhang, T.C. Xia, J. Phys. A: Math. Theor. 40, 227 (2007)[Crossref]
  • [14] N. Lü, X.G. Yuan, J.Z. Wang, J. Appl. Math. 2014, 527916 (2014)
  • [15] Q.T. Xie, Cent. Eur. J. Phys. 12, 830 (2014)
  • [16] I.E. Mhlanga, C.M. Khalique, Mediterr. J. Math. 11, 487 (2014)[Crossref]
  • [17] C.Q. Dai, X.G. Wang, G.Q. Zhou, Phys. Rev. A 89, 013834 (2014)
  • [18] C.S. Garder, J.M. Greene, M.D. Kruskal, R.M. Miura, Comm. PureAppl. Math. 27, 97 (1974)
  • [19] P.D. Lax, Comm. Pure Appl. Math. 21, 467 (1968)
  • [20] V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)
  • [21] M. Wadati, J. Phys. Soc. Jpn. 32, 1289 (1973)[Crossref]
  • [22] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett.30, 1262 (1973)[Crossref]
  • [23] M.J. Ablowitz, H. Segur, Soliton and the Inverse ScatteringTransform, (Philadelphia, PA,SIAM, 1981)
  • [24] M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equationand Inverse Scattering (Cambridge, Cambridge UniversityPress, 1991)
  • [25] H. Flaschka, Prog. Theor. Phys. 51, 703 (1974)[Crossref]
  • [26] M.J. Ablowitz, J.F. Ladik, J. Math. Phys. 16, 598 (1975)[Crossref]
  • [27] A.I. Nachman, M.J. Ablowitz, Stud. Appl. Math. 71, 243 (1984)[Crossref]
  • [28] W.L. Chan, K.S. Li, J. Math. Phys. 30, 2521 (1989)[Crossref]
  • [29] B.Z. Xu, S.Q. Zhao, Appl. Math. JCUB, 9, 331 (1994)[Crossref]
  • [30] T.K. Ning, D.Y. Chen, D.J. Zhang, Physica A 339, 248 (2007)
  • [31] Y.B. Zeng, W.X. Ma, R.L. Lin, J. Math. Phys. 41, 5453 (2000)[Crossref]
  • [32] D.Y. Chen, Introduction to Soliton (Science Press, Beijing, 2006)
  • [33] S. Zhang, Bo. Xu, H.Q. Zhang, Int. J. Comput. Math. 91, 1601(2014)
  • [34] Y. Liu, Y.T. Gao, Z.Y. Sun, X. Yu, Nonlinear Dyn. 66, 575 (2011)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.