Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

An Effective Schema for Solving Some Nonlinear Partial Differential Equation Arising In Nonlinear Physics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-05-25
zaakceptowano
2015-08-12
online
2015-10-08
Twórcy
  • Department of
    Computer Engineering, Tunceli University, Tunceli, Turkey
autor
  • Department of Mathematics, University of Firat,
    Elazig, Turkey
Bibliografia
  • [1] A. Bekir, Phys. Let. A. 372, 3400 (2008)
  • [2] A. Bekir, A. Boz, Phys. Let. A. 372, 1619 (2008)
  • [3] A. Bekir, A. Boz, Int. J. N. Sci. and Num. Sim. 8, 505 (2011)
  • [4] B. Zheng, U.P.B. Sci. Bull. Series A 73, 85 (2011)
  • [5] X.F. Yang, Z.C. Deng, Y. Wei, Adv. Dif. Equation 117, 1 (2015)
  • [6] A. Salam, S. Uddin, P. Dey, Ann. Pure Appl. Math. 10, 1 (2015)
  • [7] L. Xiusen, Z. Bin, Int. J. Eng. Sci. 4, 83 (2014)
  • [8] A. Atangana, A.H. Cloot, Adv. Dif. Equation 2013, 1 (2013)
  • [9] K. Khan, M.A. Akbar, S.M.R. Islam, Springer Plus 3, 19 (2014)
  • [10] A. S. Alofi, Int. Math. Forum 7, 2639 (2012)
  • [11] K. Khan, M.A. Akbar, JAAUBAS 15, 74 (2014)
  • [12] H. Sunagawa, J. Math. Soc. Japan 58, 379 (2006)
  • [13] B. Zheng, WSEAS Trans. Math. 7, 618 (2012)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.