Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
Słowa kluczowe
improved Bernoulli sub-equation function
method Nonlinear Schrodinger Equation (NSE) (1+1)-
dimensional nonlinear Dispersive Modified Benjamin-
Bona-Mahony equation (NDMBBME) (2+1)-dimensional
nonlinear cubic Klein-Gordon equation (cKGE) exponential
function solution hyperbolic function solution complex
trigonometric function solution
method Nonlinear Schrodinger Equation (NSE) (1+1)-
dimensional nonlinear Dispersive Modified Benjamin-
Bona-Mahony equation (NDMBBME) (2+1)-dimensional
nonlinear cubic Klein-Gordon equation (cKGE) exponential
function solution hyperbolic function solution complex
trigonometric function solution
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-05-25
zaakceptowano
2015-08-12
online
2015-10-08
Twórcy
autor
-
Department of
Computer Engineering, Tunceli University, Tunceli, Turkey
autor
-
Department of Mathematics, University of Firat,
Elazig, Turkey
Bibliografia
- [1] A. Bekir, Phys. Let. A. 372, 3400 (2008)
- [2] A. Bekir, A. Boz, Phys. Let. A. 372, 1619 (2008)
- [3] A. Bekir, A. Boz, Int. J. N. Sci. and Num. Sim. 8, 505 (2011)
- [4] B. Zheng, U.P.B. Sci. Bull. Series A 73, 85 (2011)
- [5] X.F. Yang, Z.C. Deng, Y. Wei, Adv. Dif. Equation 117, 1 (2015)
- [6] A. Salam, S. Uddin, P. Dey, Ann. Pure Appl. Math. 10, 1 (2015)
- [7] L. Xiusen, Z. Bin, Int. J. Eng. Sci. 4, 83 (2014)
- [8] A. Atangana, A.H. Cloot, Adv. Dif. Equation 2013, 1 (2013)
- [9] K. Khan, M.A. Akbar, S.M.R. Islam, Springer Plus 3, 19 (2014)
- [10] A. S. Alofi, Int. Math. Forum 7, 2639 (2012)
- [11] K. Khan, M.A. Akbar, JAAUBAS 15, 74 (2014)
- [12] H. Sunagawa, J. Math. Soc. Japan 58, 379 (2006)
- [13] B. Zheng, WSEAS Trans. Math. 7, 618 (2012)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0035