Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The eigenvalues Ednl (a, c) of the d-dimensional Schrödinger equation with the Cornell potential V(r) = −a/r + c r, a, c > 0 are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is suffcient to know E(1, λ), and the envelope method provides analytic bounds for the equivalent complete set of coupling functions λ(E). Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2015-01-01
otrzymano
2014-05-09
zaakceptowano
2014-08-12
online
2014-10-28
Twórcy
autor
- Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada, richard.hall@concordia.ca
autor
- Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada, nsaad@upei.ca
Bibliografia
- [1] J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)
- [2] H.-S. Chung, J. Lee, J. Korean Phys. Soc. 52, 1151 (2008)[Crossref]
- [3] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.- M. Yan, Phys. Rev. Lett. 34, 369 (1975) [Erratum-ibid. 36, 1276 (1976)].[Crossref]
- [4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 17, 3090 (1978)
- [5] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980)
- [6] P.W.M. Evans, C.R. Allton, J.-I. Phys. Rev. D 89, 071502 (2014)
- [7] J.-K. Chen, Phys. Rev. D 88, 076006 (2013)
- [8] M. Hamzavi, A.A. Rajabi, Ann Phys.-New York 334, 316 (2013)
- [9] C.O. Dib, N.A. Neill, Phys. Rev. D 86, 094011 (2012)
- [10] G.S. Bali, Phys. Rep. 343, 1 (2001)[Crossref]
- [11] D. Kang, E. Won, J. Comput. Phys. 20, 2970 (2008) 2970.[Crossref]
- [12] R.L. Hall, Phys. Rev. D 30, 433 (1984)[Crossref]
- [13] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)[Crossref]
- [14] R.L. Hall, Phys. Rev. D 22, 2062 (1980)
- [15] R.L. Hall, J. Math. Phys. 24, 324 (1983)[Crossref]
- [16] R.L. Hall, J. Math. Phys. 25, 2078 (1984)[Crossref]
- [17] R.L. Hall, Phys. Rev. A 39, 5500 (1989)[Crossref]
- [18] R.L. Hall, J. Math. Phys. 34, 2779 (1993)[Crossref]
- [19] K. Atkinson, W. Han, Spherical harmonics and approximations on the unit sphere: An introduction (Springer, New York, 2012)
- [20] D.J. Doren, D.R. Herschbach, J. Chem. Phys. 85, 4557 (1986)
- [21] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, The appropriate discrete-spectrumresult for the linear-plus-Coulomb potential is given by Theorem XIII.69 (Academic Press, New York, 1978) 250
- [22] M. Abramowitz, I. Stegun, Handbook ofmathematical functions (Dover Publications, New York, 1965)
- [23] L.D. Landau, E.M. Lifshitz, QuantumMechanics: non-relativistic theory (Pergamon, London, 1981)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0012