PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Recent Progress in Multimodal Photoacoustic Tomography

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since its first demonstration of functional imaging in small animals about a decade ago, photoacoustic tomography (PAT) has quickly become one of the fastest growing biomedical imaging modalities. Combining optical excitation with acoustic detection, PAT can provide detailed images of tissues deep in the body. While PAT technology continues to improve significantly, substantial efforts have also been made to develop multimodal PAT systems. These systems not only provide complementary information for more comprehensive characterization of tissue, they also generate data that can be used to further improve PAT reconstruction. This review will present current progress in multimodal PAT imaging, focusing on the technical aspects of integration and its applications in biomedicine.
Wydawca
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2015-01-10
zaakceptowano
2015-05-21
online
2015-09-10
Twórcy
autor
  • Department of Biomedical Engineering,
    University at Buffalo, The State University of New York,
    Buffalo, 14260
autor
  • Department of Biomedical Engineering,
    University at Buffalo, The State University of New York,
    Buffalo, 14260
autor
  • Department of Biomedical Engineering,
    University at Buffalo, The State University of New York,
    Buffalo, 14260
Bibliografia
  • ---
  • [1] Bell, A.G., On the production and reproduction of sound bylight. Am. J. Sci., 1880. 20: p. 305-325.[Crossref]
  • [2] Kruger, R.A., Photoacoustic ultrasound. Medical Physics, 1994.21(1): p. 127-131.[Crossref]
  • [3] Oraevsky, A.A., S.L. Jacques, and F.K. Tittel, Measurement oftissue optical properties by time-resolved detection of laserinducedtransient stress. Appl. Opt., 1997. 36(1): p. 402-415.[Crossref]
  • [4] Wang, X., et al., Noninvasive laser-induced photoacoustic tomographyfor structural and functional in vivo imaging of thebrain. Nat Biotech, 2003. 21(7): p. 803-806.[Crossref]
  • [5] Ke, H.X., et al., Performance characterization of an integratedultrasound, photoacoustic, and thermoacoustic imaging system.Journal of Biomedical Optics, 2012. 17(5).[Crossref]
  • [6] Danielli, A., et al., Label-free photoacoustic nanoscopy. Journalof biomedical optics, 2014. 19(8): p. 086006-086006.[Crossref]
  • [7] Yao, J., et al., Wide-field fast-scanning photoacoustic microscopybased on a water-immersible MEMS scanning mirror.Journal of Biomedical Optics, 2012. 17(8): p. 080505-1.[Crossref]
  • [8] Buehler, A., et al., Video rate optoacoustic tomography ofmouse kidney perfusion. Opt. Lett., 2010. 35(14): p. 2475-2477.[Crossref]
  • [9] Xiang, L., et al., 4-D Photoacoustic Tomography. Sci. Rep.,2013. 3(1113): p. 1-8.
  • [10] Oladipupo, S., et al., VEGF is essential for hypoxia-induciblefactor-mediated neovascularization but dispensable for endothelialsprouting. Proceedings of the National Academy ofSciences of the United States of America, 2011. 108(32): p.13264-13269.
  • [11] Oladipupo, S.S., et al., Conditional HIF-1 induction producesmultistage neovascularization with stage-specific sensitivity toVEGFR inhibitors and myeloid cell independence. Blood, 2011.117(15): p. 4142-4153.[Crossref]
  • [12] Bitton, R., et al., A 3-D high-frequency array based 16 channelphotoacoustic microscopy systemfor in vivo micro-vascularimaging. IEEE Trans Med Imaging, 2009. 28(8): p. 1190-1197.[Crossref]
  • [13] Staley, J., et al., Growth of melanoma brain tumors monitoredby photoacoustic microscopy. Journal of Biomedical Optics,2010. 15(4): p. 040510.[Crossref]
  • [14] Chen, S.L., et al., Photoacoustic correlation spectroscopy andits application to low-speed flow measurement. Optics Letters,2010. 35(8): p. 1200-1202.[Crossref]
  • [15] Cui, H.Z. and X.M. Yang, In vivo imaging and treatment of solidtumor using integrated photoacoustic imaging and high intensityfocused ultrasound system. Medical Physics, 2010. 37(9):p. 4777-4781.[Crossref]
  • [16] de la Zerda, A., et al., Ultrahigh Sensitivity Carbon NanotubeAgents for Photoacoustic Molecular Imaging in Living Mice.Nano Letters, 2010. 10(6): p. 2168-2172.[PubMed]
  • [17] Li, L., et al., Simultaneous imaging of a lacZ-marked tumor andmicrovasculature morphology in vivo by dual-wavelength photoacousticmicroscopy. J Innov Opt Health Sci, 2008. 1(2): p.207-215.[Crossref]
  • [18] Li, M.L., et al., In-vivo photoacoustic microscopy of nanoshellextravasation from solid tumor vasculature. Journal of BiomedicalOptics, 2009. 14(1): p. 010507.[Crossref]
  • [19] Li, M., et al., Simultaneous Molecular and Hypoxia Imaging ofBrain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography.Proceedings of the IEEE, 2008. 96(3): p. 481-489.
  • [20] Olafsson, R., et al., Real-time, contrast enhanced photoacousticimaging of cancer in a mouse window chamber. Optics Express,2010. 18(18): p. 18625-18632.[Crossref]
  • [21] Kim, C., M. Jeon, and L.V. Wang, Nonionizing photoacousticcystography in vivo. Optics Letters, 2011. 36(18): p. 3599-3601.[Crossref]
  • [22] Jeon, M., J. Kim, and C. Kim, Photoacoustic Cystography.2013(76): p. e50340.
  • [23] Chatni, M.R., et al., Tumor glucose metabolism imaged invivo in small animals with whole-body photoacoustic computedtomography. Journal of Biomedical Optics, 2012. 17(7):p. 076012.
  • [24] Buehler, A., et al. Visualization of mouse kidney perfusion withmultispectral optoacoustic tomography (MSOT) at video rate.in Proceedings of SPIE. 2011. SPIE.
  • [25] Hu, S., et al., Functional transcranial brain imaging by opticalresolutionphotoacoustic microscopy. Journal of BiomedicalOptics, 2009. 14(4): p. 040503.[Crossref]
  • [26] Wang, X.D., et al., Noninvasive photoacoustic angiography ofanimal brains in vivo with near-infrared light and an opticalcontrast agent. Optics Letters, 2004. 29(7): p. 730-732.[Crossref]
  • [27] Liao, L.D., et al., Imaging brain hemodynamic changes duringrat forepawelectrical stimulation using functional photoacousticmicroscopy. Neuroimage, 2010. 52(2): p. 562-570.[Crossref]
  • [28] Tsytsarev, V., et al., Photoacoustic microscopy of microvascularresponses to cortical electrical stimulation. Journal ofBiomedical Optics, 2011. 16(7): p. 076002.[Crossref]
  • [29] Yang, J.-M., et al. A 2.5-mm outer diameter photoacoustic endoscopicmini-probe based on a highly sensitive PMN-PT ultrasonictransducer. 2012. San Francisco, California, USA: SPIE.
  • [30] Yang, J.-M., et al. Toward dual-wavelength functional photoacousticendoscopy: laser and peripheral optical systems development.2012. San Francisco, California, USA: SPIE.
  • [31] Yao, J., et al., Double-illumination photoacoustic microscopy.Optics Letters, 2012. 37(4): p. 659-661.[Crossref]
  • [32] Yao, J., et al. Double-illumination photoacoustic microscopy ofintestinal hemodynamics following massive small bowel resection.2012. San Francisco, California, USA: SPIE.
  • [33] Rowland, K.J., et al., Immediate alterations in intestinal oxygensaturation and blood flow after massive small bowel resectionas measured by photoacoustic microscopy. Journal of PediatricSurgery, 2012. 47(6): p. 1143-1149.[Crossref]
  • [34] Taruttis, A., et al., Real-time imaging of cardiovascular dynamicsand circulating gold nanorods with multispectral optoacoustictomography. Optics Express, 2010. 18(19): p. 19592-19602.[Crossref]
  • [35] Zhang, C., K. Maslov, and L.H.V. Wang, Subwavelengthresolutionlabel-free photoacoustic microscopy of optical absorptionin vivo. Optics Letters, 2010. 35(19): p. 3195-3197.[Crossref]
  • [36] Zemp, R.J., et al., Realtime PhotoacousticMicroscopy ofMurineCardiovascular Dynamics. Optics Express, 2008. 16(22): p.18551-18556.[Crossref]
  • [37] Holotta, M., et al., Photoacoustic tomography of ex vivo mousehearts with myocardial infarction. Journal of Biomedical Optics,2011. 16(3): p. 036007.[Crossref]
  • [38] Xu, M.H. and L.H.V. Wang, Photoacoustic imaging inbiomedicine. Review of Scientific Instruments, 2006. 77(4): p.22.
  • [39] Wang, L.V. and S. Hu, Photoacoustic Tomography: In Vivo Imagingfrom Organelles to Organs. Science, 2012. 335(6075): p.1458-1462.
  • [40] Beard, P., Biomedical photoacoustic imaging. Interface Focus,2011. 1(4): p. 602-631.[Crossref]
  • [41] Xia, J., J. Yao, and L.H.V. Wang, Photoacoustic Tomography:Principles and Advances. Progress In Electromagnetics Research,2014. 147: p. 1-22.[Crossref]
  • [42] Wang, L.V., Tutorial on Photoacoustic Microscopy and ComputedTomography. Selected Topics in Quantum Electronics,IEEE Journal of, 2008. 14(1): p. 171-179.[Crossref]
  • [43] Xia, J. and L. Wang, Small-animal whole-body photoacoustictomography: a review. Biomedical Engineering, IEEE Transactionson, 2014. 61(5): p. 1380-1389.
  • [44] Zhang, H.F., et al., Functional photoacoustic microscopy forhigh-resolution and noninvasive in vivo imaging. Nat Biotech,2006. 24(7): p. 848-851.[Crossref]
  • [45] Maslov, K., et al., Optical-resolution photoacoustic microscopyfor in vivo imaging of single capillaries. Opt. Lett., 2008. 33(9):p. 929-931.[Crossref]
  • [46] Xia, J., et al., Wide-field two-dimensional multifocal opticalresolutionphotoacoustic-computed microscopy. Optics Letters,2013. 38(24): p. 5236-5239.[Crossref]
  • [47] Li, G., K.I. Maslov, and L.V. Wang, Reflection-mode multifocaloptical-resolution photoacoustic microscopy. Journal ofBiomedical Optics, 2013. 18(3): p. 030501-030501.[Crossref]
  • [48] Song, L., K. Maslov, and L.V. Wang, Multifocal opticalresolutionphotoacoustic microscopy in vivo. Opt. Lett., 2011.36(7): p. 1236-1238.[Crossref]
  • [49] Xu, M. and L.V. Wang, Universal back-projection algorithmfor photoacoustic computed tomography. Physical Review E,2005. 71(1): p. 016706.[Crossref]
  • [50] Xu, Y. and L.V. Wang, Time Reversal and Its Application to Tomographywith Diffracting Sources. Physical Review Letters,2004. 92(3): p. 033902.[Crossref]
  • [51] Treeby, B.E. and B.T. Cox, k-Wave:MATLAB toolbox for the simulationand reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 2010. 15(2).
  • [52] Yuan, J., et al., Real-time photoacoustic and ultrasound dualmodalityimaging system facilitated with graphics processingunit and code parallel optimization. Journal of Biomedical Optics,2013. 18(8): p. 086001-086001.[Crossref]
  • [53] Ozbek, A., X.L. Deán-Ben, and D. Razansky, Realtime parallelback-projection algorithm for three-dimensional optoacousticimaging devices. 2013: p. 88000I-88000I.
  • [54] Cheung, C.C.P., et al., Multi-channel pre-beamformed data acquisitionsystem for research on advanced ultrasound imagingmethods. Ultrasonics, Ferroelectrics and Frequency Control,IEEE Transactions on, 2012. 59(2): p. 243-253.[Crossref]
  • [55] Erpelding, T.N., et al., Sentinel Lymph Nodes in the Rat: NoninvasivePhotoacoustic and US Imaging with a Clinical US System1.Radiology, 2010. 256(1): p. 102-110.
  • [56] Kang, H.-J., et al. Software framework of a real-time prebeamformedRF data acquisition of an ultrasound researchscanner. 2012.
  • [57] Needles, A., et al., Development and initial application of afully integrated photoacoustic micro-ultrasound system. Ultrasonics,Ferroelectrics and Frequency Control, IEEE Transactionson, 2013. 60(5).
  • [58] Nikoozadeh, A., et al. Photoacoustic imaging using a 9F microLinearCMUT ICE catheter. in Ultrasonics Symposium (IUS),2012 IEEE International. 2012.
  • [59] Yang, J.M., et al., Simultaneous functional photoacousticand ultrasonic endoscopy of internal organs in vivo. NatureMedicine, 2012. 18(8): p. 1297-+.[Crossref]
  • [60] Zhang, Y., et al., Non-invasive multimodal functional imagingof the intestine with frozen micellar naphthalocyanines. NatNano, 2014. 9(8): p. 631-638.[Crossref]
  • [61] Emelianov, S.Y., et al., Synergy and applications of combinedultrasound, elasticity, and photoacoustic imaging. 2006 IEEEUltrasonics Symposium (IEEE Cat. No.06CH37777), 2006: p. 11pp.-11 pp.11 pp.
  • [62] Duric, N., et al., Detection of breast cancer with ultrasoundtomography: First results with the Computed Ultrasound RiskEvaluation (CURE) prototype. Medical Physics, 2007. 34(2): p.773-785.[Crossref]
  • [63] Jin, X., C. Li, and L.V. Wang, Effects of acoustic heterogeneitieson transcranial brain imaging with microwave-induced thermoacoustictomography. Medical Physics, 2008. 35(7): p.3205-3214.[Crossref]
  • [64] Jin, X. and L.V.Wang, Thermoacoustic tomography with correctionfor acoustic speed variations. Physics in Medicine and Biology,2006. 51(24): p. 6437.[Crossref]
  • [65] Xia, J., et al., Enhancement of photoacoustic tomography byultrasonic computed tomography based on optical excitationof elements of a full-ring transducer array. Opt. Lett., 2013.38(16): p. 3140-3143.[Crossref]
  • [66] Jose, J., et al., Passive element enriched photoacoustic computedtomography (PER PACT) for simultaneous imaging ofacoustic propagation properties and light absorption. Opt. Express,2011. 19(3): p. 2093-2104.[Crossref]
  • [67] Jose, J., et al., Speed-of-sound compensated photoacoustic tomographyfor accurate imaging. Medical Physics, 2012. 39(12):p. 7262-7271.[Crossref]
  • [68] Deán-Ben, X.L., V. Ntziachristos, and D. Razansky, Effects ofsmall variations of speed of sound in optoacoustic tomographicimaging. Medical Physics, 2014. 41(7): p. -.
  • [69] Yang, H., et al., Handheld miniature probe integrating diffuseoptical tomography with photoacoustic imaging through aMEMS scanning mirror. Biomedical Optics Express, 2013. 4(3):p. 427-432.[Crossref]
  • [70] Kumavor, P.D., et al., Target detection and quantification usinga hybrid hand-held diffuse optical tomography and photoacoustictomography system. Journal of biomedical optics, 2011.16(4): p. 046010-046010-12.[Crossref]
  • [71] Li, X.Q., et al., Integrated diffuse optical tomography and photoacoustictomography: phantom validations. Biomedical OpticsExpress, 2011. 2(8): p. 2348-2353.[Crossref]
  • [72] Xi, L., et al., Design and evaluation of a hybrid photoacoustictomography and diffuse optical tomography system for breastcancer detection. Medical Physics, 2012. 39(5): p. 2584-2594.[Crossref]
  • [73] Kim, C., C. Favazza, and L.H.V. Wang, In Vivo PhotoacousticTomography of Chemicals: High-Resolution Functional andMolecular Optical Imaging at New Depths. Chemical Reviews,2010. 110(5): p. 2756-2782.[Crossref]
  • [74] Wang, B., et al., Photoacoustic tomography and fluorescencemolecular tomography: A comparative study based on indocyaninegreen. Medical Physics, 2012. 39(5): p. 2512-2517.[Crossref]
  • [75] Kosik, I. and J.J.L. Carson. Combined 3D photoacoustic and2D fluorescence imaging of indocyanine green contrast agentflow. 2013.
  • [76] Kim, C., et al., Sentinel Lymph Nodes and Lymphatic Vessels:Noninvasive Dual-Modality in Vivo Mapping by Using IndocyanineGreen in Rats-Volumetric Spectroscopic PhotoacousticImaging and Planar Fluorescence Imaging. Radiology, 2010.255(2): p. 442-450.[Crossref]
  • [77] Xie, X., et al. Photoacoustic tomography andmolecular fluorescenceimaging: dual modality imaging of small animal brainsin vivo. 2005.
  • [78] Razansky, D. and V. Ntziachristos, Hybrid photoacoustic fluorescencemolecular tomography using finite-element-basedinversion. Medical Physics, 2007. 34(11): p. 4293-4301.[Crossref]
  • [79] Fatakdawala, H., et al.,Multimodal in vivo imaging of oral cancerusing fluorescence lifetime, photoacoustic and ultrasoundtechniques. Biomedical Optics Express, 2013. 4(9): p. 1724-1741.[Crossref]
  • [80] Wang, L.V. and H.-i. Wu, Biomedical optics: principles andimaging. 2012: John Wiley & Sons.
  • [81] Li, L., et al., Three-dimensional combined photoacoustic andoptical coherence microscopy for in vivo microcirculation studies.Optics Express, 2009. 17(19): p. 16450-16455.[Crossref]
  • [82] Jiao, S., et al., Photoacoustic ophthalmoscopy for in vivo retinalimaging. Optics Express, 2010. 18(4): p. 3967-3972.[Crossref]
  • [83] Zhang, X., H.F. Zhang, and S. Jiao, Optical coherence photoacousticmicroscopy: accomplishing optical coherence tomographyand photoacoustic microscopy with a single light source.Journal of biomedical optics, 2012. 17(3): p. 0305021-0305023.
  • [84] Zhang, E.Z., et al., Multimodal photoacoustic and optical coherencetomography scanner using an all optical detectionscheme for 3D morphological skin imaging. Biomedical OpticsExpress, 2011. 2(8): p. 2202-2215.[Crossref]
  • [85] Xi, L., et al.,Miniature probe combining optical-resolution photoacousticmicroscopy and optical coherence tomography forin vivomicrocirculation study. Applied Optics, 2013. 52(9): p.1928-1931.[Crossref]
  • [86] Zhang, H.F., et al., Collecting back-reflected photons in photoacousticmicroscopy. Optics Express, 2010. 18(2): p. 1278-1282.[Crossref]
  • [87] Yu, W., et al., Integrated Photoacoustic and Fluorescence ConfocalMicroscopy. Biomedical Engineering, IEEE Transactionson, 2010. 57(10): p. 2576-2578.
  • [88] Yao, J. and L.V. Wang, Photoacoustic microscopy. Laser & PhotonicsReviews, 2013. 7(5): p. 758-778.[Crossref]
  • [89] Chen, S.-L., et al. Prototype study on a miniaturized dualmodalityimaging system for photoacoustic microscopy andconfocal fluorescence microscopy. 2014.
  • [90] Mertz, J., Nonlinear microscopy: new techniques and applications.Current opinion in neurobiology, 2004. 14(5): p. 610-616.[Crossref]
  • [91] Tserevelakis, G.J., et al., Hybrid multiphoton and optoacousticmicroscope. Optics Letters, 2014. 39(7): p. 1819-1822.[Crossref]
  • [92] Rao, B., et al., Integrated photoacoustic, confocal, and twophotonmicroscope. Journal of Biomedical Optics, 2014. 19(3):p. 036002-036002.[Crossref]
  • [93] Kircher, M.F., et al., A brain tumor molecular imaging strategyusing a new triple-modality MRI-photoacoustic-Ramannanoparticle. Nat Med, 2012. 18(5): p. 829-834.[Crossref]
  • [94] Jeon, M., et al., Methylene blue microbubbles as a model dualmodalitycontrast agent for ultrasound and activatable photoacousticimaging. Journal of Biomedical Optics, 2014. 19(1).
  • [95] Huynh, E., et al., Aggregate Enhanced Trimodal Porphyrin ShellMicrobubbles forUltrasound, Photoacoustic, and FluorescenceImaging. Bioconjugate Chemistry, 2014. 25(4): p. 796-801.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phto-2015-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.