Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Piezoelectric Micromachined Ultrasonic Transducers for Photoacoustic Imaging: Modeling and Simulation of Structural Parameters on Receive Performance

Treść / Zawartość
Warianty tytułu
Języki publikacji
Introduction: Although many piezoelectric micromachined ultrasonic transducers (pMUTs) with different structures have been presented and fabricated for photoacoustic imaging (PAI), most of them are lack of systemic analysis and optimizations of design parameters. It is of important to explore the internal physical mechanisms and corresponding cause-effect relationships of the receive performance of pMUTs with different structures. The purpose of this study is to present a novel numerical method for an efficient design of the AlN-based pMUT for application in PAI system. Methods: A planar and two curved (dome-shaped and concave) structures of pMUTs based on aluminum nitride (AlN) were modeled numerically in this study. For each pMUT, the performance of receive sensitivity was simulated systemically using the finite elements analysis (FEA). Moreover, the physical parameters of three structureswere analyzed in detail, such as the radius of curvature, the height of SiO2, the height of AlN and the height of polyimide. Results: The obtained results show that the receive performance of three structures in water or air could be ordered as: the dome-shaped > the concave > the planar. Further, several valuable findings of this study would be used to design pMUTs so as to achieve better receive performance, such as: (a) for an optimum radius of curvature almost exists for any curved pMUT, (b) a thinner supporting layer means a better receive performance, (c) the piezoelectric layer in three structures have an optimum thickness, and (d) the height of polyimide affects little the receive performance in all structures. Conclusions: For a pMUT-based ultrasound sensor in photoacoustic imaging (PAI), the dome-shaped pMUT has a better receive sensitivity than that of the planar structure and the concave structure, whose physical parameters combining the work frequency could be optimized efficiently with a numerical method.
Opis fizyczny
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, China 610054
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, China 610054
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, China 610054
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, China 610054
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, China 610054
  • Center for Information in BioMedicine, University of Electronic
    Science and Technology of China, Chengdu, China 610054
  • [1] Beard P, Biomedical photoacoustic imaging, Interface focus,2011: rsfs20110028.
  • [2] Oraevsky A A, Andreev V A, Karabutov A A, et al. Laser optoacousticimaging of the breast: detection of cancer angiogenesis,International Biomedical Optics Symposium. InternationalSociety for Optics and Photonics, 1999: 352-363.
  • [3] Wang X, Pang Y, Ku G, et al. Noninvasive laser-induced photoacoustictomography for structural and functional in vivo imagingof the brain. Nature biotechnology, 2003, 21(7): 803-806.[Crossref]
  • [4] Sethuraman S, Amirian J H, Litovsky S H, et al. Ex vivo characterizationof atherosclerosis using intravascular photoacousticimaging. Optics express, 2007, 15(25): 16657-16666.[WoS][Crossref]
  • [5] Hu S, Maslov K, Wang L V. Noninvasive label-free imaging ofmicrohemodynamics by optical-resolution photoacoustic microscopy.Optics express, 2009, 17(9): 7688-7693.[Crossref][WoS]
  • [6] Zhang H F, Maslov K, Stoica G, et al. Functional photoacousticmicroscopy for high-resolution and noninvasive in vivo imaging.Nature biotechnology, 2006, 24(7): 848-851.[Crossref]
  • [7] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging fromorganelles to organs. Science, 2012, 335(6075): 1458-1462.[WoS]
  • [8] Xi L, Zhou L, Jiang H. C-scan photoacoustic microscopy for invivoimaging of Drosophila pupae. Applied Physics Letters, 2012,101(1): 013702.[Crossref][WoS]
  • [9] Yao L, Jiang H. Finite-element-based photoacoustic tomographyin time domain. Journal of Optics A: Pure and Applied Optics,2009, 11(8): 085301.
  • [10] Yao L, Sun Y, Jiang H. Transport-based quantitative photoacoustictomography: simulations and experiments. Physics inmedicine and biology, 2010, 55(7): 1917.
  • [11] Yang J M, Maslov K, Yang H C, et al. Photoacoustic endoscopy.Optics letters, 2009, 34(10): 1591-1593.[Crossref][WoS]
  • [12] Yang H, Xi L, Samuelson S, et al. Handheld miniature probe integratingdiffuse optical tomography with photoacoustic imagingthrough a MEMS scanning mirror. Biomedical optics express,2013, 4(3): 427-432.[Crossref][WoS]
  • [13] Jansen K, Springeling G, Lancée C, et al. An intravascularphotoacoustic imaging catheter. Ultrasonics Symposium (IUS).IEEE, 2010: 378-381.
  • [14] Karpiouk A B,Wang B, Emelianov S Y. Development of a catheterfor combined intravascular ultrasound and photoacoustic imaging.Review of Scientific Instruments, 2010, 81(1): 014901.[WoS]
  • [15] Wang Y F, Yang Y, Ren T L, et al. Ultrasonic transducer arraydesign for medical imaging based on MEMS technologies.Biomedical Engineering and Informatics (BMEI), 2010 3rd InternationalConference on. IEEE, 2010, 2: 666-669.
  • [16] Sammoura F, Shelton S, Akhbari S, et al. A two-port piezoelectricmicromachined ultrasonic transducer. Electronic PackagingTechnology (ICEPT), 2014 15th International Conference on.IEEE, 2014: 1-4.
  • [17] Liao W, Liu W, Rogers J E, et al. Piezeoelectric micromachinedultrasound tranducer array for photoacoustic imaging. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS &EUROSENSORS XXVII), 2013 Transducers &Eurosensors XXVII:The 17th International Conference on. IEEE, 2013: 1831-1834.
  • [18] Dausch D E, Gilchrist K H, Carlson J B, et al. In vivo real-time3-D intracardiac echo using PMUT arrays. Ultrasonics, Ferroelectrics,and Frequency Control, IEEE Transactions on, 2014,61(10): 1754-1764.[Crossref]
  • [19] Hajati A, Latev D, Gardner D, et al. Three-dimensional microelectromechanical system piezoelectric ultrasound transducer.Applied Physics Letters, 2012, 101(25): 253101.[Crossref]
  • [20] Akhbari S, Sammoura F, Shelton S, et al. Highly responsivecurved aluminum nitride pMUT. Micro Electro Mechanical Systems(MEMS), 2014 IEEE 27th International Conference on. IEEE,2014: 124-127.
  • [21] Sammoura F, Akhbari S, Lin L. An analytical solution for curvedpiezoelectric micromachined ultrasonic transducers withspherically shaped diaphragms. Ultrasonics, Ferroelectrics,and Frequency Control, IEEE Transactions on, 2014, 61(9):1533-1544.[WoS][Crossref]
  • [22] Guedes A, Shelton S, Przybyla R, et al. Aluminum nitride pMUTbased on a flexurally-suspended membrane. Solid-State Sensors,Actuators and Microsystems Conference (TRANSDUCERS),2011 16th International. IEEE, 2011: 2062-2065.
  • [23] Vernet J L, Steichen W, Lardat R, et al. PMUTS design optimizationfor medical probes applications. Ultrasonics Symposium,2001 IEEE. IEEE, 2001, 2: 899-902.
  • [24] Akasheh F, Fraser J D, Bose S, et al. Piezoelectric micromachinedultrasonic transducers: Modeling the influence of structuralparameters on device performance. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2005, 52(3): 455-468.[Crossref]
  • [25] Agag T, Koga T, Takeichi T. Studies on thermal and mechanicalproperties of polyimide–clay nanocomposites. Polymer, 2001,42(8): 3399-3408.[Crossref]
  • [26] Fu D, Ren T L, Chen H, et al. A novel method for fabricating2-D array piezoelectric micromachined ultrasonic transducersfor medical imaging. Applications of Ferroelectrics, 2009. ISAF2009. 18th IEEE International Symposium on the. IEEE, 2009: 1-4.
  • [27] Lu Y, Heidari A, Shelton S, et al. High frequency piezoelectricmicromachined ultrasonic transducer array for intravascular ultrasoundimaging. Micro Electro Mechanical Systems (MEMS),2014 IEEE 27th International Conference on. IEEE, 2014: 745-748.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.