PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Thermoacoustic tomography: A novel method for early breast tumor detection

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a comprehensive review on a non-invasive, high resolution and high contrast imaging modality, called thermoacoustic tomography (TAT). Details about the principles, history and future directions of TAT are described.
Wydawca
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-12-15
zaakceptowano
2015-05-21
online
2015-09-08
Twórcy
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
autor
  • School of Physical Electronics,
    University of Electronic Science and Technology of China,
    Chengdu, 610054
Bibliografia
  • ---
  • [1] E. A. Sickles, D. L. Miglioretti, R. Ballard-Barbash, et al. Performancebenchmarks for diagnostic mammography, Radiology,2005, 235(3): 775-90[Crossref]
  • [2] N. F. Boyd, G. A. Lockwood, J.W.Byng, et al.Mammographic densitiesand breast cancer risk, Breast Dis, 1998, 10(3-4): 113-26
  • [3] W. Teh, A. R. Wilson. The role of ultrasound in breast cancerscreening – A consensus statement by the European Group forbreast cancer screening, Eur J Cancer, 1998, 34(4): 449-450[Crossref]
  • [4] D. A. Bluemke, C. A. Gatsonis, M. H. Chen, et al. Magnetic resonanceimaging of the breast prior to biopsy, JAMA, 2004, 292(22): 2735-2742
  • [5] E. Warner, D. B. Plewes, K. A. Hill, et al. Surveillance of BRCA1and BRCA2 mutation carriers with magnetic resonance imaging,ultrasound, mammography, and clinical breast examination,JAMA, 2004, 292(11): 1317-25
  • [6] T. Bowen. Radiation-induced thermoacoustic soft tissue imaging,Proceedings of 1981 Ultrasonics Symposium, Chicago, IL,USA, 1981, 817: 22-32
  • [7] R. G. Olsen, J. C. Lin. Acoustic imaging of a model of a humanhand using pulsed microwave irradiation, Bioelectromagnetics,1983, 01(4): 397-400[Crossref]
  • [8] J. C. Lin, K. H. Chan. Microwave thermoelastic tissue imaging:system design, IEEE Trans, Microwave Theory Tech., 1984,01(32): 854-860
  • [9] R. A. Kruger, K. K. Kopecky, A. M. Aisen, et al. ThermoacousticCT with radio waves: A medical imaging paradigm, Radiology,1999, 211: 275-278.
  • [10] W. T. Joines, Y. Zhang, C. Li, and R. Jirtle. The measured electricalproperties of normal and malignant human tissues from 50 to900 MHz, Med Phys, 1994, 21: 547-550
  • [11] S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. Thomas. Dielectricproperties of normal and malignant human breast tissuesat radiowave and microwave frequencies, Indian J Biochem Biophys,1984, 21: 76-79
  • [12] A. J. Surowiec, S. Stuchly, J. Barr, and A. Swarup. Dielectric propertiesof breast carcinoma and the surrounding tissues, IEEETrans Biomed Eng, 1988, 35: 257-263[Crossref]
  • [13] M. Lazebnik, D. Popovic, L. McCartney, et al. A large scale studyof the ultra-wideband microwave dielectric properties of normal,benign andmalignant breast tissues obtained from cancersurgeries, Phys Med Biol, 2007, 52: 6093-6115[Crossref]
  • [14] S. P. Poplack, K. Paulsen, A. Hartov, et al. Electromagneticbreast imaging: Average tissue property values in women withnegative clinical findings, Radiology, 2004, 231:571-580
  • [15] V. E. McClean, R. Shepperd, and E. Grant. A generalized modelfor the interaction of microwave radiation with bound water inbiological material, J Microwave Power, 1981, 16: 1-7
  • [16] S. P. Poplack, T. D. Tosteson, W. A. Wells, et al. Electromagneticbreast imaging: Results of a pilot study in womenwith abnormalmammograms, Radiology, 2007, 243: 350-359
  • [17] Q. Zhu, E. D. Cronin, A. A. Currier, et al. Benign versus malignantbreast masses: Optical differentiation with US-guided opticalimaging reconstruction, Radiology, 2005, 237: 57-66
  • [18] B. Chance, S. Nioka, J. Zhang, et al. Breast cancer detectionbased on incremental biochemical and physiological propertiesof breast cancers: A six-year, twosite study, Acad Radiol, 2005,12: 925-933[Crossref]
  • [19] B. W. Pogue, T. O. McBride, S. Osterman, et al. Quantitativehemoglobin tomography with diffuse nearinfrared spectroscopy:Pilot results in the breast, Radiology, 2001, 218: 261-266
  • [20] A. Cerussi, D. Hsiang, N. Shah, et al. Predicting response tobreast cancer neoadjuvant chemotherapy using diffuse opticalspectroscopy, PNAS, 2007, 104: 4014-4019
  • [21] R. A. Kruger, D. R. Reinecke and G. A. Kruger.ThermoacousticCT-technical consideration, Med Phys, 1999, 26: 1832-1837[Crossref]
  • [22] R. A. Kruger, W. L. Kiser, Jr., K. D. Miller, et al. ThermoacousticCT: Imaging Principles, In: Oraevsky A A, eds. Biomedical Optoacoustics,San Jose: Proc. SPIE, 2000, 3916: 150-159
  • [23] R. A. Kruger, W. L. Kiser, Jr., A. P. Romilly, et al. ThermoacousticCT of the breast: Pilot study observations, In: Oraevsky A A, eds.Biomedical Optoacoustics II, San Jose: Proc. SPIE, 2001, 4256:1-5
  • [24] R. A. Kruger, K. Stantz, W. L. Kiser, Jr.. Thermoacoustic CT of theBreast, In: Antonuk L E, Yaffe M J, eds. Medical Imaging 2002:Physics of Medical Imaging, San Diego: Proc. SPIE, 2002, 4682:521-525
  • [25] R. A. Kruger,W. L. Kiser, Jr., D. R. Reinecke, et al. Thermoacousticmolecular imaging of small animals, Mol Imaging, 2003, 2(2):113-123[Crossref]
  • [26] D. R. Reinecke, R. A. Kruger, R. B. Lam, et al. Co-registered photoacoustic,thermoacoustic and ultrasound mouse imaging, In:Oraevsky A A,Wang L H, eds. Photons Plus Ultrasound: Imagingand Sensing 2010, San Francisco: Proc. SPIE, 2010, 756420: 1-9[Crossref]
  • [27] L. Yao, G. F. Guo and H. B. Jiang. Quantitative microwaveinducedthermoacoustic tomography, Med Phys, 2010, 37:3752-3759[Crossref]
  • [28] L. Huang, L. Yao, L. X. Liu, et al. Quantitative thermoacoustictomography: Recovery of conductivity maps of heterogeneousmedia, Appl. Phys. Lett., 2012, 101(244106): 1-3[Crossref]
  • [29] L. H. Wang, X. .M. Zhao, H. T. Sun, et al. Microwave-inducedacoustic imaging of biological tissues, Rev Sci Instrum, 1999,70(9): 3744-3748[Crossref]
  • [30] G. Ku and L. H. Wang. Scanning microwave-induced thermoacoustictomography: Signal,resolution, and contrast,MedPhys,2001, 28(1): 4-10
  • [31] Y. Xu and L. H. Wang. Signal processing in scanning thermoacoustictomography in biological tissues, Med Phys,2001, 28:1519-1524[Crossref]
  • [32] M. H. Xu and L. H. Wang. Time-domain reconstruction for thermoacoustictomography in a spherical geometry, IEEE TransMed Imaging, 2002, 21(7): 814-822
  • [33] Y. Xu, D. Z. Feng and L. H. Wang. Exact frequency-domain reconstructionfor thermoacoustic tomography-I: Planar geometry,IEEE Trans Med Imaging, 2002, 21(7): 823-828
  • [34] Y. Xu, M. H. Xu and L. H Wang L V. Exact frequency-domain reconstructionfor thermoacoustic tomography-II: Cylindrical geometry,IEEE Trans Med Imaging, 2002, 21(7): 829-833
  • [35] M. H. Xu, Y. Xu and L. H.Wang. Time-domain reconstruction algorithmsand numerical simulations for thermoacoustic tomographyin various geometries, IEEE Trans Biomed Eng, 2003, 50(9):1086-1099
  • [36] M. H. Xu and L. H. Wang. Universal back-projection algorithmfor photoacoustic computed tomography, Phys Rev E, 2005,71(016706): 1-7[Crossref]
  • [37] M. H. Xu, G. Ku, X. Jin, et al. Breast cancer imaging by microwaveinducedthermoacoustic tomography, In: Oraevsky A A, Wang L H, eds. Photons Plus Ultrasound: Imaging and Sensing 2005:The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics,and Acousto-optics, San Jose: Proc. SPIE, 2005, 5697:45-48
  • [38] G. Ku, B. D. Fornage, X. Jin, et al.Thermoacoustic and photoacoustictomography of thick biological tissues toward breastimaging, Technol Cancer Res Treat, 2005, 4(5): 559-565[Crossref]
  • [39] M. Pramanik, G. Ku, C. H. Li, et al. Design and evaluation ofa novel breast cancer detection system combining both thermoacoustic(TA) and photoacoustic (PA) tomography, Med Phys,2008, 35: 2218-2223[Crossref]
  • [40] M. Pramanik, G. Ku, C. H. Li, et al. Novel breast cancer detectionsystem combining both thermoacoustic (TA) and photoacoustic(PA) tomography using carbon nanotubes (CNTs) as a dualcontrast agent, In: Oraevsky A A, Wang L H, eds. Proceedings ofPhotons Plus Ultrasound: Imaging and Sensing 2009, San Jose:Proc. SPIE, 2009, 71772G: 1-9
  • [41] B. Huang, K. Maslov and L. H. Wang. Photoacoustic and ThermoacousticImaging with a Multi-channel Breast Scanner, In:Oraevsky A A, Wang L H, eds. Proceedings of Photons Plus Ultrasound:Imaging and Sensing 2012, San Francisco: Proc. SPIE,2012, 822309: 1-7[Crossref]
  • [42] H. X. Ke, T. N. Erpelding, J. Jankovic, et al. Performancecharacterization of an integrated ultrasound, photoacoustic,and thermoacoustic imaging system, J. Biomed. Opt., 2012,17(5):056010[Crossref]
  • [43] A. Mashal, J. H. Booske, S. C. Hagness. Toward contrastenhancedmicrowave-induced thermoacoustic imaging ofbreast cancer: an experimental study of the effects of microbubbleson simple thermoacoustic targets, Phys Med Biol,2009, 54(3): 641-650[Crossref]
  • [44] A. T. Eckhart, R. T. Balmer,W. A. See, et al. Ex Vivo ThermoacousticImaging Over Large Fields of View With 108 MHz Irradiation,IEEE Trans Biomed Eng, 2011, 58(8): 2238-2246[Crossref]
  • [45] X. Wang, D. R. Bauer, R. Witte, et al. Microwave-induced thermoacousticimaging model for potential breast cancer detection,IEEE Trans Biomed Eng, 2012, 59(10): 2782-91[Crossref]
  • [46] D. R. Bauer, X. Wang, J. Vollin, et al. Spectroscopic thermoacousticimaging of water and fat composition, Appl Phys Lett,2012, 101(033705 ): 1-4
  • [47] G. P. Chen, W. B. Yu, Z. Q. Zhao, et al. The Prototype ofMicrowave-Induced Thermoacoustic Tomography Imaging byTime Reversal Mirror, J ELECTROMAGNET WAVE, 2008, 22: 1565-1574[Crossref]
  • [48] G. P. Chen, Z. Q. Zhao, W. Gong, et al. Development ofmicrowave-induced thermoacoustic tomography prototype system.Chinese Sci Bull, 2009, 54(12): 1786-1789
  • [49] G. P. Chen,W. B. Yu, Z. Q. Zhao, et al. The characteristics and affectsof the microwave-induced thermoacoustic signals in timeand frequency domain, ACTA ELECTRONICA SINIC, 2010, 38(3):689-694
  • [50] J. N.Wu, Z. Q. Zhao,W. Gong, et al, Antenna design of microwaveinduced thermoacoustic tomography system. Chinese Journalof Radio Science, 2010, 25(03): 543-546.
  • [51] L. M. Zeng, D. Xing, H. M. Gu, et al. Fast microwave-inducedthermoacoustic tomography based on multi-element phasecontrolledfocus technique, Chin. Phys. Lett., 2006, 23(5): 1215-1218
  • [52] L. M. Nie, D. Xing, D.W. Yang, et al. Detection of foreign body usingfast thermoacoustic tomographywith amulti-element lineartransducer array, Appl Phys Lett, 2007, 90(174109): 1-3[Crossref]
  • [53] S. H. Yang, D. Xing and L. Z. Xiang. Photoacoustic and Thermoacousticfor Brain structure and functional imaging.Sciencein China Series G:Physics, Mechanics & Astronomy, 2007, 37:101-109
  • [54] L. M. Nie, D. Xing, Q. Zhou, et al. Microwave-induced thermoacousticscanning CT for high-contrast and noninvasive breastcancer imaging, Med Phys, 2008, 35(9): 4026-4032[Crossref]
  • [55] H. Qin, D. Xu and S. H. Yang. Dextran-coated Fe3O4 magneticnanoparticles as a contrast agent in thermoacoustic tomographyfor hepatocellular carcinoma detection, J Phys ConfSers,2011,277(012028 ):1-7
  • [56] C. J. Cao, L. M. Nie, C. G. Lou, et al. Feasibility of usingmicrowave-induced thermoacoustic tomography for detectionand evaluation of renal calculi, Phys Med Biol, 2010, 55: 5203-5212[Crossref]
  • [57] L. M. Nie, Z. M. Ou, S. H. Yang, et al. Thermoacoustic moleculartomography with magnetic nanoparticle contrast agents fortargeted tumor detection, Med Phys, 2010, 37(8): 4193-4200[Crossref]
  • [58] C. G. Lou and D. Xing. Temperature monitoring utilising thermoacousticsignals during pulsed microwave thermotherapy: Afeasibility study, Intern J Hyperthermia, 2010, 26(4): 338-346[Crossref]
  • [59] C. G. Lou, S. H. Yang, Z. Ji, et al. Ultrashort microwave-inducedthermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution, Phys Rev Lett, 2012, 09(21810):1-5
  • [60] H. Qin, S. H. Yang and D. Xing. Microwave-induced thermoacousticcomputed tomography with a clinical contrast agent ofNMG2
  • [Gd(DTPA)], Appl Phys Lett, 2012, 100(03370): 1-3
  • [61] Z. Ji, C. G. Lou, S. H. Yang and D. Xing. Three-dimensionalthermoacoustic imaging for early breast cancer detection, MedPhys, 2012, 39(11): 738-6744
  • [62] D. Razansky, S. Kellnberger and V. Ntziachristos. Near-field radiofrequencythermoacoustic tomography with impulse excitation,Med Phys, 2010, 37(9):4602-4607[Crossref]
  • [63] S. Kellnberger, A. Hajiaboli, D. Razansky, et al. Nearfield thermoacoustictomography of small animals, Phys Med Biol, 2011,56: 3433-3444[Crossref]
  • [64] M. Omar, S. Kellnberger, G. Sergiadis, et al. Near-field thermoacousticimaging with transmission line pulsers, Med Phys,2012, 39(7): 4460-4466[Crossref]
  • [65] R. A. Kruger, R. B. Lam, D. R. Reinecke, et al. Photoacoustic angiographyof the breast, Med Phys, 2010, 37(11): 6096-6100[Crossref]
  • [66] L. Xi, L. Yao, S. R. Grobmyer, et al. Design and evaluation of ahybrid photoacoustic tomography and diffuse optical tomographysystem for breast cancer detection, Med phys, 2012, 39(5):2584-2594[Crossref]
  • [67] L. Xi, H. K. Xie, G. Y. Zhou, et al. Evaluation of breast tumor marginsin vivo with intraoperative photoacoustic imaging, OPT EXPRESS,2012, 20(8): 8726-8731[Crossref]
  • [68] F. Ye, S. H. Yang and D. Xing. Three-dimensional photoacousticimaging system in line confocal mode for breast cancer detection,Appl Phys Lett, 2010, 97(213702): 1-3[Crossref]
  • [69] L. Z. Xiang, D. Xing, H. Guo, et al. High Resolution Fast Digital3-D Photoacoustic CT for Breast Cancer Diagnosis, Acta PhysicaSinica, 2009, 58(7): 238-245
  • [70] S. A. Ermilov, T. Khamapirad, A. Conjusteau, et al. Laser optoacousticimaging system for detection of breast cancer, J BiomedOpt, 2009, 14(2):0240071-024007114
  • [71] J. Zalev, D. Herzog, B. Clingman, et al. Clinical Feasibility Studyof Combined Optoacoustic and Ultrasonic Imaging ModalityProviding Co-registered Functional and Anatomical Maps ofBreast Tumors, In: Oraevsky A A, Wang L H, eds. Proceedings ofPhotons Plus Ultrasound: Imaging and Sensing 2013, San Francisco:Proc. SPIE, 2013, 858103: 1-9[Crossref]
  • [72] W. F. Xia, D. Piras, J. V. Hespen, et al. An optimized ultrasounddetector for photoacoustic breast tomography, Med. Phys.,2013, 40(3): 0329011-03290113
  • [73] M. Heijblom, D. Piras, W. F. Xia, et al. Visualizing breast cancerusing the Twente photoacoustic mammoscope: What do welearn from twelve new patient measurements?, Opt. Express,2012, 20(11):11582-11597[Crossref]
  • [74] Z. Q. Zhao, J. Song, X. Z. Zhu, et al. System development of microwaveinduced thermoacoustic tomography and experimentson breast tumor, PIER, 2013, 134: 323-336
  • [75] X. Z. Zeng and G. Wang. Numerical study of microwave-inducedtherrnoacoustic effect for early breast cancer detection, IEEEAntennas and propagation society international symposium,2005, 3A: 839-842
  • [76] C. H. Li, M. Pramanik, G. Ku, et al. Image distortion in thermoacoustictomography caused by microwave diffraction, Phys.Rev. E, 2008, 77(031923): 1-7[Crossref]
  • [77] L. M. Nie and D. Xing. Imaging calibration of thermoacoustic tomographydistortion caused by microwave diffraction, In: Luo QM,Wang L H, Tuchin V V, Li P C, Fu L, eds. Proceedings of the 8thInternational Conference on Photonics and Imaging in Biologyand Medicine,Wuhan: Proc. SPIE, 2009, 75190N: 1-9
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_phto-2015-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.