PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1– 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
Wydawca

Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2015-10-06
zaakceptowano
2015-10-20
online
2015-12-31
Twórcy
  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany
  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany
  • Karolinska Institutet, Department of Clinical
    Neuroscience, Center for Molecular Medicine CMM L8:01, 17176
    Stockholm, Sweden
  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany
Bibliografia
  • [1] T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa,T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C.Eggeling, M. C. Wahl, S. W. Hell, S. Jakobs, A reversibly photoswitchableGFP-like protein with fluorescence excitation decoupledfrom switching, Nat. Biotechnol., 29, 2011, 942[Crossref]
  • [2] O. Shimomura, F. H. Johnson, Y. and Saiga, Extraction, purificationand properties of aequorin, a bioluminescent protein fromthe luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol.,59, 1962, 223[Crossref]
  • [3] S. W. Hell, J. and Wichmann, Breaking the diffraction resolutionlimit by stimulated emission: stimulated-emission-depletionfluorescence microscopy, Opt. Lett. 19, 1994, 780[Crossref]
  • [4] T. A. Klar, S. W. and Hell, Subdiffraction resolution in far-fieldfluorescence microscopy, Opt. Lett. 24, 1999, 954[Crossref]
  • [5] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescencemicroscopy with diffraction resolution barrier broken by stimulatedemission, Proc. Natl. Acad. Sci. U. S. A., 97, 2000, 8206[Crossref]
  • [6] M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imagingby stochastic optical reconstruction microscopy (STORM), Nat.Methods 3, 2006, 793
  • [7] S. T. Hess, T. P. Girirajan, M. D. Mason, Ultra-high resolutionimaging by fluorescence photoactivation localization microscopy,Biophys. J. 91, 2006, 4258[Crossref]
  • [8] O. Shimomura, Structure of the chromophore of Aequorea greenfluorescent protein, FEBS Letters, 104, 1979, 220[Crossref]
  • [9] C. D. Hu, Y. Chinenov, T. K. Kerppola, Visualization of interactionsamong bZIP and Rel family proteins in living cells usingbimolecular fluorescence complementation, Mol. Cell, 9, 2002,789[Crossref]
  • [10] J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, G. S.Waldo, Engineering and characterization of a superfolder greenfluorescent protein, Nat. Biotechnol. 24, 2006, 79[Crossref]
  • [11] S. Cabantous, T. C. Terwilliger, G. S.Waldo, Protein tagging anddetection with engineered self-assembling fragments of greenfluorescent protein, Nat. Biotechnol. 23, 2005, 102[Crossref]
  • [12] G. S. Baird, D. A. Zacharias, R. Y. Tsien, Circular permutation andreceptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci. U. S. A., 96, 1999, 11241[Crossref]
  • [13] J. Nakai, M. Ohkura, K. Imoto, A high signal-to-noise Ca(2+)probe composed of a single green fluorescent protein, Nat.Biotechnol., 19, 2001, 137[Crossref]
  • [14] Y. Zhao, Y. Yang, Profiling metabolic states with genetically encodedfluorescent biosensors for NADH, Curr.Opin. Biotechnol.,31, 2015, 86[Crossref]
  • [15] D.Magde,W.W. Webb, E. Elson, Thermodynamic Fluctuations ina Reacting System - Measurement by Fluorescence CorrelationSpectroscopy, Phys. Rev. Lett., 29, 1972, 705[Crossref]
  • [16] S. R. Aragón, R. Pecora, Fluorescence correlation spectroscopyas a probe ofmolecular dynamics, J. Chem. Phys., 64, 1976, 1791
  • [17] G. Bonnet, O. Krichevsky, A. Libchaber, Kinetics of conformationalfluctuations in DNA hairpin-loops, Proc. Natl. Acad. Sci.U.S.A., 95, 1998, 8602[Crossref]
  • [18] M. Ehrenberg, R. Rigler, Rotational Brownian motion and fluorescenceintensity fluctuations, Chem. Phys., 4, 1974, 390[Crossref]
  • [19] U. Haupts, S. Maiti, P. Schwille, W. W. Webb, Dynamics of fluorescencefluctuations in green fluorescent protein observedby fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci.U.S.A., 95, 19098, 13573
  • [20] P. Kask, P. Piksarv, M. Pooga, Ü. Mets, E. Lippmaa, Separationof the rotational contribution in fluorescence correlation experiments,Biophys. J., 55, 1989, 213[Crossref]
  • [21] D.Magde, Chemical kinetics and fluorescence correlation spectroscopy,Quart. Rev. Biophys., 9, 1976, 35[Crossref]
  • [22] B. Rauer, E. Neumann, J.Widengren, R. Rigler, Fluorescence correlationspectrometry of the interaction kinetics of tetramethylrhodaminalpha-bungarotoxin with Torpedo californica acetylcholinereceptor, Biophys. Chem., 58, 1996, 3[Crossref]
  • [23] J. Widengren, Ü. Mets, R. Rigler, Fluorescence correlation spectroscopyof triplet states in solution: a theoretical and experimentalstudy, J. Phys. Chem., 99, 1995, 13368
  • [24] J. Widengren, R. Rigler, Ü. Mets, Triplet-state monitoring by fluorescencecorrelation spectroscopy, J. Fluoresc., 4, 1994, 255[Crossref]
  • [25] E. Haustein, P. Schwille, Ultrasensitive investigations of biologicalsystems by fluorescence correlation spectroscopy, Methods,29, 2003, 153[Crossref]
  • [26] C. Eggeling, S. Berger, L. Brand, J. R. Fries, J. Schaffer, A.Volkmer, C. A. Seidel, Data registration and selective singlemoleculeanalysis using multi-parameter fluorescence detection,J. Biotechnol., 86, 2001, 163
  • [27] B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner,Photon antibunching in single CdSe/ZnS quantum dot fluorescence,Chem. Phys. Letters, 329, 2000, 399
  • [28] S. J. Singer, G. L. Nicolson, The fluid mosaic model of the structureof cell membranes, Science, 175, 1972, 720
  • [29] A. D. Dupuy, D. M. Engelman, Protein area occupancy at the centerof the red blood cell membrane, Proc. Natl. Acad. Sci. U. S.A., 105, 2008, 2848[Crossref]
  • [30] E. Zinser, C. D. Sperka-Gottlieb, E. V. Fasch, S. D. Kohlwein, F.Paltauf, F., G. Daum, Phospholipid synthesis and lipid compositionof subcellular membranes in the unicellular eukaryote Saccharomycescerevisiae, J. Bacteriol., 173, 1991, 2026
  • [31] P. G. Saffman, M. Delbrück, Brownian motion in biological membranes,Proc. Natl. Acad. Sci. U. S. A., 72, 1975, 3111[Crossref]
  • [32] Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M.Genest, R. S. Hodges, W. Urbach, Lateral mobility of proteins inliquid membranes revisited, Proc. Natl. Acad. Sci. U. S. A., 103,2006, 2098[Crossref]
  • [33] M. Khalid, F. Cornelius, R. J. Clarke, Dual mechanisms of allostericacceleration of the Na(+),K(+)-ATPase by ATP, Biophys.J., 98, 2010, 2290[Crossref]
  • [34] M. De Fusco, R. Marconi, L. Silvestri, L. Atorino, L. Rampoldi, L.Morgante, A. Ballabio, P. Aridon, G. Casari, Haploinsuflciency ofATP1A2 encoding the Na+/K+ pump alpha2 subunit associatedwith familial hemiplegic migraine type 2, Nat. Genet. 33, 2003,192
  • [35] J. P. Morth, H. Poulsen, M. S. Toustrup-Jensen, V. R. Schack,J. Egebjerg, J. P. Andersen, B. Vilsen, P. Nissen, The structureof the Na+,K+-ATPase and mapping of isoform differences anddisease-related mutations, Philos. Trans. R. Soc. Lond. B Biol.Sci., 364, 2009, 217
  • [36] N. N. Tavraz, K. L. Dürr, J. B. Koenderink, T. Freilinger, E. Bamberg,M. Dichgans, T. Friedrich, Impaired plasma membrane targetingor protein stability by certain ATP1A2 mutations identifiedin sporadic or familial hemiplegic migraine, Channels(Austin), 3, 2009, 82
  • [37] N. N. Tavraz, T. Friedrich, K. L. Dürr, J. B. Koenderink, E. Bamberg,T. Freilinger, M. Dichgans, Diverse functional consequences ofmutations in the Na+/K+-ATPase alpha2-subunit causing familialhemiplegic migraine type, J. Biol. Chem., 283, 2008, 31097
  • [38] D. P. Calderon, R. Fremont, F. Kraenzlin, K. Khodakhah, The neuralsubstrates of rapid-onset Dystonia-Parkinsonism, Nat. Neurosci.,14, 2011, 357
  • [39] P. de Carvalho Aguiar, K. J. Sweadner, J. T. Penniston, J. Zaremba,L. Liu, M. Caton, G. Linazasoro, M. Borg, M. A. Tijssen, S. B.Bressman, W. B. Dobyns, A. Brashear, L. J. Ozelius, Mutationsin the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated withrapid-onset dystonia parkinsonism, Neuron, 43, 2004, 169
  • [40] E. L. Heinzen, A. Arzimanoglou, A. Brashear, S. J. Clapcote, F.Gurrieri, D. B. Goldstein, S. H. Johannesson, M. A. Mikati, B.Neville, S. Nicole, L. J. Ozelius, H. Poulsen, T. Schyns, K. J.Sweadner, A. van den Maagdenberg, B. Vilsen, Distinct neurologicaldisorders with ATP1A3 mutations, Lancet Neurol. 13,2014, 503
  • [41] M. K. Demos, C. D. van Karnebeek, C. J. Ross, S. Adam, Y. Shen,S. H. Zhan, C. Shyr, G. Horvath, M. Suri, A. Fryer, S. J. Jones, J. M.Friedman, A novel recurrent mutation in ATP1A3 causes CAPOSsyndrome, Orphanet J. Rare Dis., 9, 2014, 15
  • [42] X. Liu, Z. Spicarova, S. Rydholm, J. Li, H. Brismar, A. Aperia,Ankyrin B modulates the function of Na,K-ATPase/inositol 1,4,5-trisphosphate receptor signaling microdomain, J. Biol. Chem.,283, 2008, 11461
  • [43] P. J. Mohler, J. J. Schott, A. O. Gramolini, K. W. Dilly, S. Guatimosim,W. H. duBell, L, S. Song, K. Haurogne, F. Kyndt, M. E. Ali,T. B. Rogers, W. J. Lederer, D. Escande, H. Le Marec, V. Bennett,Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmiaand sudden cardiac death, Nature, 421, 2003, 634
  • [44] V. Vukojevic, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, R.Rigler, Quantitative single-molecule imaging by confocal laserscanning microscopy, Proc. Natl. Acad. Sci. U. S. A., 105, 2008,18176[Crossref]
  • [45] V. Vukojevic, Y. Ming, C. D’Addario, M. Hansen, U. Langel, R.Schulz, B. Johansson, R. Rigler, L. Terenius, Mu-opioid receptoractivation in live cells, FASEB J., 22, 2008, 3537[Crossref]
  • [46] J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed., 2006, Springer, New York
  • [47] D. Magde, E. L. Elson, W. W. Webb, Fluorescence correlationspectroscopy. II. An experimental realization, Biopolymers, 13, 1974, 29[Crossref]
  • [48] G.Majer, J. P. Melchior, Characterization of the fluorescence correlationspectroscopy (FCS) standard rhodamine 6G and calibrationof its diffusion coeflcient in aqueous solutions, J. Chem.Phys., 140, 2014, 094201
  • [49] R. Rigler, P. Grasselli, M. Ehrenberg, Fluorescence CorrelationSpectroscopy and Application to the Study of Brownian Motionof Biopolymers, Phys. Scr., 19, 1979, 486
  • [50] P. Kapusta, Absolute Diffusion Coeflcients: Compilation ofReference Data for FCS Calibration, Picoquant GmbH, 2010,http://www.picoquant.com/images/uploads/page/files/7353/appnote_diffusioncoeflcients.pdf, accessed on June 12,2015.
  • [51] J. Widengren, Ü. Mets, R. Rigler, Photodynamic properties ofgreen fluorescent proteins investigated by fluorescence correlationspectroscopy, Chem. Phys., 250, 1999, 171
  • [52] R.Swaminathan, C. P. Hoang, A. S. Verkman, Photobleaching recoveryand anisotropy decay of green fluorescent protein GFPS65Tin solution and cells: cytoplasmic viscosity probed bygreen fluorescent protein translational and rotational diffusion,Biophys. J., 72, 1997, 1900
  • [53] M. A. Hink, R. A. Griep, J. W. Borst, A. van Hoek, M. H. Eppink,A. Schots, A. J. Visser, Structural dynamics of green fluorescentprotein alone and fused with a single chain Fv protein, J. Biol.Chem. 275, 2000, 17556
  • [54] Glycerine Producers’ Association, Physical Propertiesof Glycerine and Its Solutions, New York, 1963,http://www.aciscience.org/docs/physical_properties_of_glycerine_and_its_solutions.pdf.
  • [55] D. A. Zacharias, J. D. Violin, A. C. Newton, R. Y. Tsien, Partitioningof lipid-modified monomeric GFPs into membrane microdomainsof live cells, Science, 296, 2002, 913
  • [56] M. S. Paller, Lateral mobility of Na,K-ATPase and membranelipids in renal cells. Importance of cytoskeletal integrity, J.Membr. Biol. 142, 1994, 127
  • [57] K. Weiss, A. Neef, Q. Van, S. Kramer, I. Gregor, J. Enderlein,Quantifying the diffusion of membrane proteins and peptidesin black lipid membranes with 2-focus fluorescence correlationspectroscopy, Biophys. J., 105, 2013, 455
  • [58] S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J. A.Killian, B. Poolman, Lateral diffusion of membrane proteins, J.Am. Chem. Soc. 131, 2009, 12650
  • [59] A. Naji, A. J. Levine, P. A. Pincus, Corrections to the Saffman-Delbruck mobility for membrane bound proteins, Biophys. J.,93, 2007, L49
  • [60] T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structureof the sodium-potassiumpump at 2.4 Å resolution, Nature,459, 2009, 446
  • [61] P. Cicuta, S. L. Keller, S. L. Veatch, Diffusion of liquid domainsin lipid bilayer membranes, J. Phys. Chem. B, 111, 2007, 3328
  • [62] W. L. C. Vaz, F. Goodsaid-Zalduondo, K. Jacobson, Lateral diffusionof lipids and proteins in bilayer membranes, FEBS Letters,174, 1984, 199
  • [63] C. Jordan, B. Puschel, R. Koob, D. Drenckhahn, Identificationof a binding motif for ankyrin on the alpha-subunit of Na+,K+-ATPase, J. Biol. Chem., 270, 1995, 29971
  • [64] T. Cai, H. Wang, Y. Chen, L. Liu, W. T. Gunning, L. E. Quintas, Z. J.Xie, Regulation of caveolin-1 membrane traflcking by the Na/KATPase,J. Cell Biol. 182, 2008, 1153
  • [65] T. Friedrich, E. Bamberg, G. Nagel, Na+,K+-ATPase pump currentsin giant excised patches activated by an ATP concentrationjump, Biophys. J., 71, 1996, 2486
  • [66] J. Kockskämper, G. Gisselmann, H. G. Glitsch, Comparisonof ouabain-sensitive and -insensitive Na/K pumps in HEK293cells, Biochim. Biophys. Acta, 1325, 1997, 197
  • [67] N. A. Jensen, J. G. Danzl, K. I. Willig, F. Lavoie-Cardinal, T.Brakemann, S. W. Hell, S. Jakobs, Coordinate-targeted andcoordinate-stochastic super-resolution microscopy withthe reversibly switchable fluorescent protein Dreiklang,ChemPhysChem 15, 2014, 756[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_optof-2015-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.