Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 60 | 4 | 847-851
Tytuł artykułu

Structure and separation quality of various N- and O-donor ligands from quantum-chemical calculations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although BTP (2,6-di(1,2,4-triazin-3-yl)pyridine) has been proven to be a highly effective N-donor ligand for the selective An(III)/Ln(III) separation, the origin of its selectivity is still under discussion. We present in this paper quantum-chemical calculations at the density functional theory (DFT) and MP2 level which highlight the role of the aquo ions in the separation process. Furthermore these data will be the reference for future force-field development to investigate the differences in An(III) complexation reactions compared to their Ln(III) counterparts.
Wydawca

Czasopismo
Rocznik
Tom
60
Numer
4
Strony
847-851
Opis fizyczny
Daty
wydano
2015-12-01
otrzymano
2015-06-18
zaakceptowano
2015-08-21
online
2015-12-30
Twórcy
  • Institut für Nukleare Entsorgung (INE), Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany, Tel.: +49(0)721 6082 3486, Michael.Trumm@kit.edu
  • Institut für Nukleare Entsorgung (INE), Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany, Tel.: +49(0)721 6082 3486
  • Institut für Nukleare Entsorgung (INE), Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany, Tel.: +49(0)721 6082 3486
Bibliografia
  • 1. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236. DOI: 10.1021/cr3003399.[Crossref][WoS]
  • 2. Beele, B. B., Müllich, U., Schwörer, F., Geist, A., & Panak, P. J. (2012). Systematic modifications of BTP-type ligands and effects on the separation of trivalent lanthanides and actinides. Procedia Chem., 7, 146-151. DOI: 10.1016/j.proche.2012.10.025.[Crossref]
  • 3. Adam, C., Kaden, P., Beele, B. B., Müllich, U., Trumm, S., Geist, A., Panak, P. J., & Denecke, M. A. (2013). Evidence for covalence in a N-donor complex of americium(III). Dalton Trans., 42, 14068-14074. DOI: 10.1039/c3dt50953b.[Crossref][WoS]
  • 4. Solomon, E. I., Hedman, B., Hodgson, K. O., Dey, A., & Szilagyi, R. K. (2005). Ligand K-edge X-ray absorption spectroscopy: covalency of ligand-metal bonds. Coord. Chem. Rev., 249, 97-129. DOI: 10.1016/j. ccr.2004.03.020.[Crossref]
  • 5. Neidig, M. L., Clark, D. L., & Martin, R. L. (2013). Covalency in f-element complexes. Coord. Chem. Rev., 257, 394-406. DOI: 10.1016/j.ccr.2012.04.029.[Crossref][WoS]
  • 6. Kaltsoyannis, N. (2013). Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem., 52, 3407-3413. DOI: 10.1021/ic3006025.[Crossref][WoS]
  • 7. Bryantsev, V. S., & Hay, B. P. (2015). Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton Trans., 44, 7935-7942. DOI: 10.1039/c4dt03275f.[Crossref][WoS]
  • 8. De Sahb, C., Watson, L. A., Nadas, J., & Hay, B. P. (2013). Design criteria for polyazine extractants to separate An(III) from Ln(III). Inorg. Chem., 52, 10632-10642. DOI: 10.1021/ic401666m.[WoS][Crossref]
  • 9. Huang, Q. -R., Kingham, J. R., & Kaltsoyannis, N. (2015). The strength of actinide-element bonds from the quantum theory of atoms-in-molecules. Dalton Trans., 44, 2554-2566. DOI: 10.1039/c4dt02323d.[Crossref][WoS]
  • 10. Petit, L., Adamo, C., & Maldivi, P. (2006). Toward a clear-cut vision on the origin of 2,6-di(1,2,4-triazin-3-yl)pyridine selectivity for trivalent actinides: Insights from theory. Inorg. Chem., 45, 8517-8522. DOI: 10.1021/ic060227g.[Crossref]
  • 11. Guillaumont, D. (2004). Quantum chemistry study of actinide(III) and lanthanide(III) complexes with tridentate nitrogen ligands. J. Phys. Chem., 108, 6893-6900. DOI: 10.1021/jp048550x.[Crossref]
  • 12. Maldivi, P., Petit, L., Adamo, C., & Vetere, V. (2007). Theoretical description of metal ligand bonding within f-element complexes: A successful and necessary interplay between theory and experiment. C. R. Chimie, 10, 888-896. DOI: 10.1016/j.crci.2006.12.011.[Crossref]
  • 13. Narbutt, J., Wodyński, A., & Pecul, M. (2015). The selectivity of diglycolamide (TODGA) and bis-triazine- -bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation - a theoretical approach. Dalton Trans., 44, 2657-2666. DOI: 10.1039/c4dt02657h.[WoS][Crossref]
  • 14. Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 98, 1372-1377. DOI: 10.1063/1.464304.[Crossref]
  • 15. TURBOMOLE V6.4. (2012). A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com.
  • 16. Küchle, W., Dolg, M., Stoll, H., & Preuss, H. (1994). Energy-adjusted pseudopotentials for the actinides - parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys., 100, 7535-7542. DOI: 10.1063/1.466847.[Crossref]
  • 17. Weigend, F., & Häser, M. (1997). RI-MP2: First derivatives and global consistency. Theor. Chem. Acc., 97, 331-340. DOI: 10.1007/s002140050269.[Crossref]
  • 18. Weigend, F., Häser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: Optimized auxiliary basis sets and demonstrations of effi ciency. Chem. Phys. Lett., 294, 143-152. DOI: 10.1016/S0009-2614(98)00862-8.[Crossref]
  • 19. Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19, 553-566. DOI: 10.1080/00268977000101561.[Crossref]
  • 20. Klamt, A., & Schüürmann, G. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans., 2, 799-805. DOI: 10.1039/p29930000799.[Crossref]
  • 21. Ho, J., Klamt, A., & Coote, M. L. (2010). Comment on the correct use of continuum solvent models. J. Phys. Chem., 114, 13442-13444. DOI: 10.1021/jp107136j.[WoS][Crossref]
  • 22. Réal, F., Trumm, M., Vallet, V., Schimmelpfennig, B., Masella, M., & Flament, J. -P. (2010). Quantum-chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent. J. Chem. Phys. B, 114, 15913-15924. DOI: 10.1021/jp108061s.[Crossref]
  • 23. Réal, F., Trumm, M., Schimmelpfennig, B., Masella, M., & Vallet, V. (2013). Further insights in the ability of classical nonadditive potentials to model actinide ion-water interactions. J. Comp. Chem., 34, 707-719. DOI: 10.1002/jcc.23184.[WoS][Crossref]
  • 24. Borrini, J., Favre-Reguillon, A., Lemaire, M., Gracia, S., Arrachart, G., Bernier, G., Hérès, X., & Hill, C. (2015). Water soluble PDCA derivatives for selective Ln(III)/An(III) and Am(III)/Cm(III) separation. Solvent Extr. Ion Exch., 33, 224-235. DOI: 10.1080/07366299.2014.974449.[Crossref]
  • 25. Trumm, S., Geist, A., Panak, P. J., & Fanghänel, T. (2011). An improved hydrolytically-stable bis- -triazinyl-pyridine (BTP) for selective actinide extraction. Solvent Extr. Ion Exch., 29, 213-229. DOI: 10.1080/07366299.2011.539129.[WoS][Crossref]
  • 26. Hudson, M. J., Boucher, C. E., Braekers, D., Desreux, J. F., Drew, M. G. B., Foreman, M. R. S., Harwood, L. M., Hill, C., Madic, C., Marken, F., & Youngs, T. G. A. (2006). New bis(triazinyl)pyridines for selective extraction of americium(III). New J. Chem., 30, 1171-1183. DOI: 10.1039/b514108g.[Crossref]
  • 27. Boucher, C., Drew, M. G. B., Giddings, P., Harwood, L. M., Hudson, M. J., Iveson, P. B., & Madic, C. (2002). 12-coordinate complexes formed by the early lanthanide metals with 2,6-bis(-1,2,4-triazin-3-yl)- pyridin. Inorg. Chem. Commun., 5, 596-599. DOI: 10.1016/S1387-7003(02)00489-6.[Crossref]
  • 28. Kolarik, Z., Müllich, U., & Gassner, F. (1999). Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyland 2,6-ditriazinylpyridines. Solvent Extr. Ion Exch., 17, 1155-1170. DOI: 10.1080/07366299908934641.[Crossref]
  • 29. Morgan, G. T., & Burstall, F. H. (1932). Dehydrogenation of pyridine by anhydrous ferric chloride. J. Chem. Soc., 20-30.
  • 30. Drew, M. G. B., Foreman, M. R. S. J., Hill, C., Hudson, M. J., & Madic, C. (2005). 6,6ʹ-bis-(5,6-diethyl-[1,2,4] triazin-3-yl)-2,2ʹ-bipyridyl the first example of a new class of quadridentate hetercyclic extraction reagents for the separation of americium(III) and europium(III). Inorg. Chem. Commun., 8, 239-241. DOI: 10.1016/j.inoche.2004.12.017.[Crossref]
  • 31. Bremer, A., Ruff, C. M., Girnt, D., Müllich, U., Rothe, J., Roesky, P. W., Panak, P. J., Karpov, A., Müller, T. J. J., Denecke, M. A., & Geist, A. (2012). 2,6-bis(5- (2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine as a ligand for efficient actinide(III)/lanthanide(III) separation. Inorg. Chem., 51, 5199-5207. DOI: 10.1021/ic3000526.[Crossref][WoS]
  • 32. Sasaki, Y., Tsubata, Y., Kitatsuji, Y., Sugo, Y., Shirasu, N., Morita, Y., & Kimura, T. (2013). Extraction behavior of metal ions by TODGA, DOODA, MIDOA, and NTAamide extractants from HNO3 to n-Dodecane. Solvent Extr. Ion Exch., 31, 401-415. DOI: 10.1080/07366299.2013.800431.
  • 33. Beele, B., Skerencak-Frech, A., Trumm, M., & Schimmelpfennig, B. (2015). BTP a highly selective N-donor ligand studied by TRLFS and liquid-liquid extraction. (in preparation).
  • 34. Hagström, I., Spjuth, L., Enarsson, A., Liljenzin, J. O., Skalberg, M., Hudson, M. J., Iveson, P. B., Madic, C., Cordier, P. Y., Hill, C., & Francois, N. (1999). Synergistic solvent extraktion of trivalent americium and europium by 2-bromodecanoic acid and neutral nitrogen-containing reagents. Solvent Extr. Ion Exch., 17, 221-242. DOI: 10.1080/07366299908934610.[Crossref]
  • 35. Clavaguéra, C., & Dognon, J. P. (2005). Accurate static electric dipole polarizability calculations of +3 charged lanthanide ions. Chem. Phys., 311, 169-176. DOI: 10.1016/j.chemphys.2004.10.014.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.