PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 60 | 3 | 411-416
Tytuł artykułu

Magnetic resonance study of co-modified (Co,N)-TiO2nanocomposites

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three nCo,N-TiO2 nanocomposites (where cobalt concentration index n = 1, 5 and 10 wt %) were prepared and investigated by magnetic resonance spectroscopy at room temperature. Ferromagnetic resonance (FMR) lines of magnetic cobalt agglomerated nanoparticle were dominant in all registered spectra. The relaxation processes and magnetic anisotropy of the investigated spin system essentially depended on the concentration of cobalt ions. It is suggested that the samples contained two magnetic types of sublattices forming a strongly correlated spin system. It is suggested that the existence of strongly correlated magnetic system has an essential influence of the photocatalytic properties of the studied nanocomposites.
Wydawca

Czasopismo
Rocznik
Tom
60
Numer
3
Strony
411-416
Opis fizyczny
Daty
wydano
2015-07-01
otrzymano
2014-10-07
zaakceptowano
2015-01-30
online
2015-08-06
Twórcy
autor
  • Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimioupolis, GR-157 84 Athens, Greece and Department of Physics, West Pomeranian University of Technology, 48 Piastow Ave., 70-311 Szczecin, Poland
  • Department of Physics, West Pomeranian University of Technology, 48 Piastow Ave., 70-311 Szczecin, Poland, Tel.: +48 91 449 4595, Fax: +48 91 449 4181, gzolnierkiewicz@zut.edu.pl
  • Department of Physics, West Pomeranian University of Technology, 48 Piastow Ave., 70-311 Szczecin, Poland, Tel.: +48 91 449 4595, Fax: +48 91 449 4181
autor
  • Department of Physics, West Pomeranian University of Technology, 48 Piastow Ave., 70-311 Szczecin, Poland, Tel.: +48 91 449 4595, Fax: +48 91 449 4181
  • Department of Physics, West Pomeranian University of Technology, 48 Piastow Ave., 70-311 Szczecin, Poland, Tel.: +48 91 449 4595, Fax: +48 91 449 4181
autor
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology, 10 Pulaskiego Str., 70-322 Szczecin, Poland
autor
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology, 10 Pulaskiego Str., 70-322 Szczecin, Poland
  • Department of Electronics-Computers-Telecommunications and Control, Faculty of Physics, University of Athens, Panepistimioupolis, GR-157 84 Athens, Greece
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology, 10 Pulaskiego Str., 70-322 Szczecin, Poland
Bibliografia
  • 1. Kim, D. H., Yang, J. S., Lee, K. W., Bu, S. D., Noh, T. W., Oh, S.-J., Kim, Y. -W., Chung, J. -S., Tanaka, H., Lee, H. Y., & Kawai, T. (2002). Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Appl. Phys. Lett., 81, 2421–2423.
  • 2. Punnoose, A., Seehra, M. S., Park, W. K., & Moodera, J. S. (2003). On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl. Phys., 93, 7867–7869.
  • 3. Santara, B., Pal, B., & Giri, P. K. (2011). Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys., 110, 114322.
  • 4. Hong, N. H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., & Gervais, F. (2004). Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B, 70, 195204.
  • 5. Griffin, K. A., Pakhomov, A. B., Wang, C. M., Heald, S. M., & Krishnan Kannan, M. (2005). Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett., 94, 157204.[Crossref]
  • 6. Sangaletti, L., Mozzati, M. C., Galinetto, P., Azzoni, C. B., Speghini, A., Bettinelli, M., & Calestani, G. (2006). Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu). J. Phys.-Condens. Matter, 18, 7643–7650.[Crossref]
  • 7. Nefedov, A., Akdogan, N., Zabel, H., Khaibullin, R. I., & Tagirov, L. R. (2006). Spin polarization of oxygen atoms in ferromagnetic Co-doped rutile TiO2. Appl. Phys. Lett., 89, 182509.
  • 8. Park, Y. R., Choi, S., Lee, J. H., Kim, K. J., & Kim, C. S. (2007). Ferromagnetic properties of Ni-doped rutile TiO2−δ. J. Korean Phys. Soc., 50, 638–642.
  • 9. Kim, D., Hong, J., Park, Y. R., & Kim, K. J., (2009). The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys.-Condens. Matter, 21, 195405(4pp.).[Crossref][WoS]
  • 10. Li, H., Liu, M., Zeng, Y., & Huang, T. (2010). Coexistence of antiferromagnetic and ferromagnetic in Mn-doped anatase TiO2 nanowires. J. Cent. South Univ., 17, 239–243.[WoS]
  • 11. Green, I. X., Tang, W., Neurock, M., & Yates, J. T. Jr (2011). Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science, 333, 736–739.
  • 12. Mudarra Navarro, A. M., Bilovol, V., Cabrera, A. F., & Rodriguez Torres, C. E. (2012). Relationship between structural and magnetic properties in (Ti,Fe) O2 powders obtained by mechanical milling. Physica B, 407, 3225–3228.
  • 13. Zhao, Y. L., Motapothula, M., Yakovlev, N. L., Liu, Z. Q., Dhar, S., Rusydi, A., Ariando, Breese, M. B. H., Wang, Q., & Venkatesan, T. (2012). Reversible ferromagnetism in rutile TiO2 single crystals induced by nickel impurities. Appl. Phys. Lett., 101, 142105.[WoS]
  • 14. Parras, M., Varela, A., Cortes-Gil, R., Boulahya, K., Hernando, A., & Gonzales-Calbet, J. M. (2013). Room-temperature ferromagnetism in reduced rutile TiO2−δ nanoparticles. J. Phys. Chem. Lett., 4, 2171–2176.[Crossref]
  • 15. Nakai, I., Sasano, M., Inui, K., Korekawa, T., Ishijima, H., Katoh, H., Li, Y. J., & Kurisu, M. (2013). Oxygen vacancy and magnetism of a room temperature ferromagnet Co-doped TiO2. J. Korean Phys. Soc., 63, 532–537.[WoS]
  • 16. Choudhury, B., & Choudhury, A. (2013). Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng. B, 178, 794–800.
  • 17. Santara, B., Giri, P. K., Dhara, S., Imakita, K., & Fuji, M. (2014). Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D-Appl. Phys., 47, 235304(14pp.).[WoS]
  • 18. Dolat, D., Mozia, S., Ohtani, B., & Morawski, A. W. (2013). Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chem. Eng. J., 225, 358–364.
  • 19. Guskos, N., Glenis, S., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., Ohtani, B., & Morawski, A. W. (2014). Magnetic resonance study of co-modified (Fe,N)-TiO2. J. Alloy. Compd., 606, 32–36.
  • 20. Coronado, J. M., Maira, A. J., Conesa, J. C., Yeung, K. L., Augugliaro, V., & Soria, J. (2001). EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 17, 5368–5374.
  • 21. Mele, G., Del Sole, R., Vasapollo, G., Marci, G., Garcia-Lopez, E., Palmisano, L., Coronado, J. M., Hernandez-Alonso, M. D., Malitesta, C., & Guascito, M. R. (2005). TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J. Phys. Chem. B, 109, 12347–12352.
  • 22. Yang, S., Halliburton, L. E., Manivannan, A., Bunton, P. H., Baker, D. B., Klemm, M., Horn, S., & Fujishima, A. (2009). Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions. Appl. Phys. Lett., 94, 162114(3pp.).[Crossref]
  • 23. Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., & Zhang, J. (2009). Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J., 151, 220–227.
  • 24. Brandao, F. D., Pinheiro, M. V. B., Ribeiro, G. M., Medeiros-Ribeiro, G., & Krambrock, K. (2009). Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2. Phys. Rev. B, 80, 235204.
  • 25. Yang, S., Brant, A. T., & Halliburton, L. E. (2010). Photoinduced self-trapped hole center in TiO2 crystals. Phys. Rev. B, 82, 035209.[Crossref][WoS]
  • 26. Macdonald, I. R., Howe, R. F., Zhang, X., & Zhou, W. (2010). In situ EPR studies of electron trapping in a nanocrystalline rutile. J. Photochem. Photobiol. A-Chem., 216, 238–243.
  • 27. Shkrob, I. A., Marin, T. W., Chemerisov, S. D., & Sewilla, M. D. (2011). Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides. J. Phys. Chem. C, 115, 4642–4648.[WoS]
  • 28. Guskos, N., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2012). Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater. Sci. Eng. B, 177, 223–227.
  • 29. Guskos, N., Typek, J., Guskos, A., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2013). Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. Cent. Eur. J. Chem., 11, 1996–2004.[Crossref]
  • 30. Guskos, N., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Mozia, S., & Morawski, A. W. (2015). Magnetic resonance study of nickel and nitrogen co-modified titanium dioxide nanocomposites. In NATO Science for Peace and Security Series – C: Environmental Security, “Nanotechnology in the security systems”, 29 September – 3 October 2013 (pp. 33–48). Dordrecht: Springer.
  • 31. Dolat, D., Mozia, S., Wrobel, R. J., Moszynski, D., Ohtani, B., Guskos, N., & Morawski, A. W. (2015). Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B-Environ., 162, 310–318.[WoS]
  • 32. Guskos, N., Anagnostakis, E. A., Gasiorek, G., Typek, J., Bodzionny, T., Narkiewicz, U., Arabczyk, W., & Konicki, W. (2004). Magnetic resonance study of α-Fe and Fe3C nanoparticle agglomerates in a nonmagnetic matrix. Mol. Phys. Rep., 39, 58–65.
  • 33. Guskos, N., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I., & Wrobel, R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Materials Science-Poland, 23, 1001–1008.
  • 34. Helminiak, A., Arabczyk, W., Zolnierkiewicz, G., Guskos, N., & Typek, J. (2011). FMR study of the influence of carburization levels by methane decomposition on nanocrystalline iron. Rev. Adv. Mater. Sci., 29, 166–174.
  • 35. Kliava, J. (2009). Electron magnetic resonance of nanoparticles: Superparamagnetic resonance. In S. P. Gubin (Ed.), Magnetic nanoparticles (pp. 255–302). Wiley-VCH. Retrieved 15 September 2009, from .
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.