Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 60 | 1 | 57-61
Tytuł artykułu

Mössbauer study of a tetrakis (pentafluorophenyl) porphyrin iron (III) chloride in comparison with the fluorine unsubstituted analogue

Treść / Zawartość
Warianty tytułu
Języki publikacji
Mössbauer investigations, in association with density functional theory (DFT) calculations, have been conducted for the molecular and electronic structures of iron (III) [tetrakis (pentafluorophenyl)] porphyrin chloride [(F20TPP)Fe:Cl], as a Fe(III)-tetraphenylporphyrin complex containing chloride axial ligand and substituted hydrogen atoms by fluorine ones in the four phenyl rings, in comparison with its fluorine unsubstituted analogue [(TPP)Fe:Cl]. It was found that the parameters of Mössbauer spectra of both complexes are close to one another, and correspond to the high-spin state of Fe(III) ions, but they show the different temperature dependence and the quadrupole doublets in Mössbauer spectra show different asymmetry at low temperatures. Results of DFT calculations are analyzed in the light of catalytic activity of the halogenated complex.

Opis fizyczny
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975,
  • Institute of Physics, Jagiellonian University, 4 Reymonta Str., 30-059 Kraków, Poland
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975
  • 1. Sheldon, R. A. (1994). Metalloporphyrins in catalytic oxidations. New York: Marcel Dekker.
  • 2. Meunier, B. (1999). Biomimetic oxidations catalyzed by transition metal complexes. London: Imperial College Press.
  • 3. Gray, H. B., & Winkler, J. R. (2003). Heme protein dynamics: Electron tunneling and redox triggered folding. In K. M. Kadish, K. M. Smith & G. Guilard (Eds.), The porphyrin handbook (Vol. 11, pp. 51–75). Amsterdam: Academic Press.
  • 4. Malinowski, T. (2000). Porphyrin-based electrochemical sensors. In K. M. Kadish, K. M. Smith & G. Guilard (Eds.), The porphyrin handbook (Vol. 6, pp. 231–256). San Diego: Academic Press.
  • 5. Dziedzic-Kocurek, K., Okła, D., & Stanek, J. (2013). Inter- and intramolecular dynamics of iron porphyrins. Nukleonika, 58, 7–11.
  • 6. Hu, Ch., Noll, B. C., Schultz, C. E., & Scheidt, W. R. (2007). Four-coordinate iron (II) porphyrinates: Electronic configuration change by intermolecular interaction. Inorg. Chem., 46, 619–621. DOI: 10.1021/ic0620182.[Crossref]
  • 7. Hoard, J. L., Cohen, G. H., & Glick, M. D. (1967). The stereochemistry of the coordination group in an iron (III) derivative of tetraphenylporphine. J. Am. Chem. Soc., 89, 1992–1996. DOI: 10.1021/ja00985a004.[Crossref]
  • 8. Lang, G., Spartalian, K., Reed, C. A., & Collman, J. P. (1978). Mössbauer effect study of the magnetic properties of S=1 ferrous tetraphenylporphyrin. J. Chem. Phys., 69, 5424–5427. DOI: 10.1063/1.436532.
  • 9. Wei, L., She, Y., Yu, Y., Yao, X., & Zhang, S. (2012). Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin: A DFT investigation. J. Mol. Model., 18, 2483–2491. DOI: 10.1007/s00894-011-1279-x.[Crossref][WoS]
  • 10. Asghari-Khiavi, M., & Safinejad, F. (2010). Theoretical studies on metal porphyrin halides: Geometrical parameters and nonlinear optical responses. J. Mol. Model., 16, 499–503. DOI: 10.1007/s00894-009-0556-4.[WoS][Crossref]
  • 11. Liu, N., Jiang, G. F., Guo, C. C., & Tan, Z. (2009). Quantitative structure-activity relationship studies on ironporphyrin–catalyzed cyclohexane oxidation with PhIO. J. Mol. Catal. A-Chem., 304, 40–46. DOI: 10.1016/j.molcata.2009.01.021.[WoS][Crossref]
  • 12. Lu, Q. Z., Yu, R. Q., & Shen, G. L. (2003). The structure, catalytic activity and reaction mechanism modeling for halogenated iron-tetraphenylporphyrin complexes. J. Mol. Catal. A-Chem., 198, 9–22. DOI: 10.1016/S1381-1169(02)00726-4.[Crossref]
  • 13. Stephenson, N. A., & Bell, A. T. (2006). Effects of methanol on the therodynamics of iron(III) [tetrakis (pentafluorophenyl)] porphyrin chloride dissociation and the creation of catalytically active species for the epoxidation of cyclooctene. Inorg. Chem., 45, 5591–5599. DOI: 10.1021/ic0521067.[Crossref]
  • 14. Stephenson, N. A., & Bell, A. T. (2006). A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron (III) tetrakispentafluorophenyl porphyrin. J. Am. Chem. Soc., 127, 8635–8643. DOI: 10.1021/ja043380n.[Crossref]
  • 15. Cunningham, I. D., Basaleh, A., & Gazzaz, H. (2012). Pre-steady state reactivity of 5,10,15,20-tetrakis (pentafluorophenyl)-21H, 23H-porphyrin iron (III) chloride with hydrogen peroxide. Dalton Trans., 41, 9158–9160. DOI: 10.1039/c2dt31107k.[Crossref][WoS]
  • 16. Kaczmarzyk, T., Jackowski, T., & Dziliński, K. (2007). Spectroscopic characteristics of FeI-phthalocyanine. Nukleonika, 52, 99–103.
  • 17. Velde, G. Te., Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca Guerra, C., Baerends, E. J., Snijders, J. G., & Ziegler, T. (2001). Chemistry with ADF. J. Comput. Chem., 22, 931. DOI: 10.1002/jcc.1056.[Crossref]
  • 18. van Lenthe, E., & Baerends, E. J. (2003). Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem., 24, 1142–1156. DOI: 10.1002/jcc.10255.[Crossref]
  • 19. Scheidt, W. R., & Finnegan, M. G. (1989). Structure of monoclinic chloro (meso-tetraphenylporphyrinato) iron(III). Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 45, 1214–1216. DOI: 10.S0108270189000715.
  • 20. Scheidt, W. R., & Lee, Y. J. (1987). Recent advances in the stereochemistry of metallotetrapyrroles. Struct. Bond., 64, 1–70. DOI: 10.1007/BFb0036789.[Crossref]
  • 21. Lu, Q. Z., Lu, Y., & Wang, J. J. (2006). DFT study of iron tetraphenylporphyrin chloride and iron pentafluorophenylporphyrin chloride. Chinese J. Chem. Phys., 19, 227–232. DOI: 10.1360/cjcp2006.19(3).227.6.[Crossref]
  • 22. Debrunner, P. G. (1989). Mössbauer spectroscopy of iron porphyrins. In A. B. P. Lever & H. B. Gray (Eds.), Iron porphyrins. (Part III, pp. 140–234). New York: VCH Publishers.
  • 23. Shenoy, G. K., Wagner, F. E., & Kalvius, G. M. (1978). The measurement of the isomer shift. In G. K. Shenoy & F. E. Wagner (Eds.), Mössbauer isomer shifts (pp. 49–110). Amsterdam: North-Holland Publishing Co.
  • 24. Lyons, J. E., Ellis, P. E., & Myers, H. K. (1995). Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. J. Catal., 155, 59–73. DOI: 10.1006/jcat.1995.1188.[Crossref]
  • 25. Zhan, C. G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affinity, electronegativity, hardness and electron excitation energy: Molecular properties from density functional theory orbital energy. J. Phys. Chem. A, 107, 4184–4195. DOI: 10.1021/jp0225774.[Crossref]
  • 26. Ernst, J., Subramanian, J., & Fuhrhop, J. H. (1977). Magnetic interactions in iron (III) porphyrin chlorides. Z. Naturforsch., 32a, 1129–1136.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.