Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 1 | 1 |
Tytuł artykułu

Integrated plasmonic double bowtie / ring grating structure for enhanced electric field confinement

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metallic nanoparticles and nanoantennas have been extensively studied due to their capability to increase electromagnetic field confinement which is essential in numerous applications ranging from optoelectronics to telecommunication and sensing devices. We show that a double bowtie nanoantenna has a higher electric field confinement in its gap compared to a single bowtie nanoantenna, which is expected to give better fluorescence enhancement of a single emitter placed in the gap. We show that the electric field intensity can be further increased by placing the double bowtie inside a ring grating structure where the excitation of surface plasmon-polaritons (SPPs) is achieved. We perform FDTD simulations to characterise the double bowtie nanoantenna and study the effect of its dimensions on the electric field enhancement in the gap. Our proposed integrated structure with gratings is shown to increase the electric field by a factor of 77 due to a double cavity effect. Next steps would be to study the fluorescence enhancement of emitters placed inside our double bowtie / ring grating nanocavity to see if the strong coupling regime can be attained.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-06-22
zaakceptowano
2015-05-20
online
2015-08-28
Twórcy
autor
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
autor
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
autor
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
autor
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
autor
  • Laboratory of Nanotechnology, Instrumentation and Optics, Charles
    Delaunay Institute - UMR CNRS 6281, University of Technology of Troyes
Bibliografia
  • [1] Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.;Moerner, W. E. Nat. Photonics 2009, 3 (11), 654–657.[Crossref]
  • [2] Farahani, J. N.; Pohl, D. W.; Eisler, H.-J.; Hecht, B. Phys. Rev.Lett. 2005, 95 (1), 017402.[Crossref]
  • [3] Aouani, H.; Rahmani, M.; Navarro-Cía, M.; Maier, S. A. Nat.Nanotechnol. 2014, 9 (4), 290–294.[Crossref]
  • [4] Biagioni, P.; Huang, J.; Duò, L.; Finazzi, M.; Hecht, B. Phys. Rev.Lett. 2009, 102 (25), 256801.[Crossref]
  • [5] Gao, Z.; Shen, L.; Li, E.; Xu, L.; Wang, Z. J. Light. Technol. 2012,30 (6), 829–833.[Crossref]
  • [6] Kumar V., D.; Bhardwaj, A.; Mishra, D. Micro Nano Lett. 2011, 6(2), 94.[Crossref]
  • [7] Di Martino, G.; Sonnefraud, Y.; Kéna-Cohen, S.; Tame, M.;Özdemir, Ş. K.; Kim, M. S.; Maier, S. A. Nano Lett. 2012, 12 (5),2504–2508.[Crossref]
  • [8] Steele, J. M.; Liu, Z.; Wang, Y.; Zhang, X. Opt. Express 2006, 14(12), 5664–5670.[Crossref]
  • [9] Wang, D.; Yang, T.; Crozier, K. B. Opt. Express 2011, 19 (3),2148–2157.[Crossref]
  • [10] Kinzel, E. C.; Srisungsitthisunti, P.; Li, Y.; Raman, A.; Xu, X.Appl. Phys. Lett. 2010, 96 (21), 211116.[Crossref]
  • [11] Chang, D.; Sørensen, A.; Hemmer, P.; Lukin, M. Phys. Rev. B2007, 76 (3), 035420.[Crossref]
  • [12] Törmä, P.; Barnes, W. L. ArXiv Prepr. ArXiv14051661 2014.
  • [13] Bellessa, J.; Bonnand, C.; Plenet, J.; Mugnier, J. Phys. Rev. Lett.2004, 93 (3).[Crossref]
  • [14] Stokes, J. L.; Yu, Y.; Yuan, Z. H.; Pugh, J. R.; Lopez-Garcia, M.;Ahmad, N.; Cryan, M. J. J. Opt. Soc. Am. B 2014, 31 (2), 302.[Crossref]
  • [15] Hatab, N. A.; Hsueh, C.-H.; Gaddis, A. L.; Retterer, S. T.; Li, J.-H.;Eres, G.; Zhang, Z.; Gu, B. Nano Lett. 2010, 10 (12), 4952–4955.[Crossref]
  • [16] Jiunn-Woei Liaw. IEEE J. Sel. Top. Quantum Electron. 2008, 14(6), 1441–1447.[Crossref]
  • [17] Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S.; Xiong, Q.J. Phys. Chem. Lett. 2013, 4 (3), 496–501.[Crossref]
  • [18] Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C.Nano Lett. 2011, 11 (3), 1009–1013.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_nansp-2015-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.