Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-05-22
zaakceptowano
2015-06-26
online
2015-07-24
Twórcy
autor
-
Department of
Biological Sciences, Florida State University, Tallahassee, FL, 32306-
4370, USA
autor
-
Department of Physics, Florida State University, Tallahassee,
FL, 32306-4350, USA
autor
-
Department of
Biological Sciences, Florida State University, Tallahassee, FL, 32306-
4370, USA
autor
-
National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Florida State University, Tallahassee, FL 32310-
3706, USA
autor
-
Department of
Biological Sciences, Florida State University, Tallahassee, FL, 32306-
4370, USA -
Integrative NanoScience
Institute, Florida State University, Tallahassee, FL, 32306, USA
Bibliografia
- [1] Lenhert S., Brinkmann F., Laue T., Walheim S., VannahmeC., Klinkhammer S. , et al., Lipid multilayer gratings, Nat.Nanotechnol., 2010, 5, 275-279.[Crossref]
- [2] Lenhert S., Sun P., Wang Y.H., Fuchs H., Mirkin C.A., Massivelyparallel dip-pen nanolithography of heterogeneous supportedphospholipid multilayer patterns, Small, 2007, 3, 71-75.[Crossref]
- [3] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S.,Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithographyon Subcellular Scales for the Templating of Functional Proteinsand Cell Culture, Small, 2008, 4, 1785-1793.[Crossref]
- [4] Lowry T.W., Kusi-Appiah A., Guan J., Van Winkle D.H., DavidsonM.W., Lenhert S., Materials Integration by Nanointaglio, Adv.Mater. Int., 2014, 1, 1-5.[Crossref]
- [5] Majd S., Mayer M., Generating Arrays with High Content andMinimal Consumption of Functional Membrane Proteins, J. Am.Chem. Soc., 2008, 130, 16060-16064.
- [6] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional LipidMultilayer Stamping, Small 2012, 8, 1021-1028.[Crossref]
- [7] Mathieu M., Schunk D., Franzka S., Mayer C., Hartmann N.,Temporal stability of photothermally fabricated micropatternsin supported phospholipid multilayers, J. Vac. Sci. Technol. A,2010, 28, 953-957.[Crossref]
- [8] Diguet A., Le Berre M., Chen Y., Baigl D., Preparation ofPhospholipid Multilayer Patterns of Controlled Size andThickness by Capillary Assembly on a MicrostructuredSubstrate, Small, 2009, 5, 1661-1666.[Crossref]
- [9] Brinker C. J., Lu Y. F., Sellinger A., Fan H. Y., Evaporationinducedself-assembly: Nanostructures made easy, Adv. Mater.,1999, 11, 579-585.[Crossref]
- [10] Yuan B., Xing L.L., Zhang Y.D., Lu Y., Mai Z. H., Li M.,Self-assembly of highly oriented lamellar nanoparticlephospholipidnanocomposites on solid surfaces, J. Am. Chem.Soc., 2007, 129, 11332-11333.
- [11] Cai Y.J., Zhao Z., Chen J.X., Yang T.L., Cremer P.S., DeflectedCapillary Force Lithography, ACS Nano, 2012, 6, 1548-1556.[Crossref]
- [12] Jeong H.E., Kwak R., Khademhosseini A., Suh K.Y., UV-assistedcapillary force lithography for engineering biomimeticmultiscale hierarchical structures: From lotus leaf to gecko foothairs, Nanoscale, 2009, 1, 331-338.[Crossref]
- [13] Suh K.Y., Kim Y.S., Lee H.H., Capillary force lithography, Adv.Mater., 2001, 13, 1386-1389.[Crossref]
- [14] Anrather D., Smetazko M., Saba M., Alguel Y., Schalkhammer T.,Supported membrane nanodevices, J. Nanosci. Nanotechnol.,2004, 4, 1-2.
- [15] Kusi-Appiah A.E., Vafai N., Cranfill P.J., Davidson M.W., LenhertS., Lipid multilayer microarrays for in vitro liposomal drugdelivery and screening, Biomaterials, 2012, 33, 4187-4194.[Crossref]
- [16] Majd S., Mayer M., Hydrogel stamping of arrays of supportedlipid bilayers with various lipid compositions for the screeningof drug–membrane and protein–membrane interactions,Angew. Chem., 2005, 117, 6855-6858.[Crossref]
- [17] Diaz-Mochon J.J., Tourniaire G., Bradley M., Microarrayplatforms for enzymatic and cell-based assays, Chem. Soc.Rev., 2007, 36, 449-457.[Crossref]
- [18] Bailey S.N., Sabatini D.M., Stockwell B.R., Microarrays of smallmolecules embedded in biodegradable polymers for use inmammalian cell-based screens, Proc. Natl. Acad. Sci. U. S. A.,2004, 101, 16144-16149.[Crossref]
- [19] Tourniaire G., Collins J., Campbell S., Mizomoto H., Ogawa S.,Thaburet J.F., et al., Polymer microarrays for cellular adhesion,Chem. Comm., 2006, 2118-2120.[Crossref]
- [20] Balakin K.V., Savchuk N.P., Tetko I.V., In silico approachesto prediction of aqueous and DMSO solubility of drug-likecompounds: Trends, problems and solutions, Curr. Med.Chem., 2006, 13, 223-241.[Crossref]
- [21] Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T.,Opinion - Migrating cancer stem cells - an integrated conceptof malignant tumour progression, Nat. Rev. Cancer 2005, 5,744-749.[Crossref]
- [22] Sampieri K., Fodde R., Cancer stem cells and metastasis,Semin. Cancer Biol., 2012, 22, 187-193.[Crossref]
- [23] Eilken H.M., Adams R.H., Dynamics of endothelial cell behaviorin sprouting angiogenesis, Curr. Opin. Cell Biol., 2010, 22,617-625.[Crossref]
- [24] Griffioen A.W., Molema G., Angiogenesis: Potentials forpharmacologic intervention in the treatment of cancer, cardiovasculardiseases, and chronic inflammation, Pharmacol. Rev.,2000, 52, 237-268.
- [25] Witte M.B., Barbul A., General principles of wound healing,Surg. Clin. North Am., 1997, 77, 509-528.[Crossref]
- [26] Aman A., Piotrowski T., Cell migration during morphogenesis,Dev. Biol., 2010, 341, 20-33.
- [27] Weijer C.J., Collective cell migration in development, J. Cell Sci.,2009, 122, 3215-3223.[Crossref]
- [28] Liang C.C., Park A.Y., Guan J.L., In vitro scratch assay: aconvenient and inexpensive method for analysis of cellmigration in vitro, Nat. Protoc., 2007, 2, 329-333.[Crossref]
- [29] Valster A., Tran N.L., Nakada M., Berens M.E., Chan A.Y.,Symons M., Cell migration and invasion assays, Methods,2005, 37, 208-215.[Crossref]
- [30] van Horssen R., ten Hagen T.L.M., Crossing Barriers: The NewDimension of 2D Cell Migration Assays, J. Cell. Physiol., 2011,226, 288-290.
- [31] Yarrow J.C., Totsukawa G., Charras G.T., Mitchison T.J.,Screening for cell migration inhibitors via automatedmicroscopy reveals a rho-kinase inhibitor, Chem. Biol., 2005,12, 385-395.[Crossref]
- [32] Lenhert S., Meier M.B., Meyer U., Chi L.F., Wiesmann H.P.,Osteoblast alignment, elongation and migration on groovedpolystyrene surfaces patterned by Langmuir-Blodgettlithography, Biomaterials, 2005, 26, 563-570.[Crossref]
- [33] Poujade M., Grasland-Mongrain E., Hertzog A., JouanneauJ., Chavrier P., Ladoux B., et al., Collective migration of anepithelial monolayer in response to a model wound, Proc. Natl.Acad. Sci. U. S. A., 2007, 104, 15988-15993.[Crossref]
- [34] Shin K.D., Lee M.Y., Shin D.S., Lee S., Son K.H., Koh S., et al.,Blocking tumor cell migration and invasion with biphenylisoxazole derivative KRIBB3, a synthetic molecule thatinhibits Hsp27 phosphorylation. J. Biol. Chem.. 2005, 280,41439-41448.
- [35] Attoub S., Hassan A.H., Vanhoecke B., Iratni R., TakahashiT., Gaben A.-M., et al., Inhibition of cell survival, invasion,tumor growth and histone deacetylase activity by the dietaryflavonoid luteolin in human epithelioid cancer cells, Eur. J.Pharmacol., 2011, 651, 18-25.
- [36] Gough W., Hulkower K.I., Lynch R., McGlynn P., Uhlik M.,Yan L., Lee J.A., A Quantitative, Facile, and High-ThroughputImage-Based Cell Migration Method Is a Robust Alternative tothe Scratch Assay, J. Biomol. Screen., 2011, 16, 155-163.[Crossref]
- [37] Tavana H., Kaylan K., Bersano-Begey T., Luker K.E., Luker G.D.,Takayama S., Rehydration of Polymeric, Aqueous, BiphasicSystem Facilitates High Throughput Cell Exclusion Patterning for Cell Migration Studies, Adv. Funct. Mater., 2011, 21,2920-2926.[Crossref]
- [38] Chung S., Sudo R., Mack P.J., Wan C.R., Vickerman V., KammR.D., Cell migration into scaffolds under co-culture conditionsin a microfluidic platform, Lab Chip, 2009, 9, 269-275.[Crossref]
- [39] Conant C.G., Nevill J.T., Schwartz M., Ionescu-Zanetti C., WoundHealing Assays in Well Plate-Coupled Microfluidic Devices withControlled Parallel Flow, J. Lab. Autom., 2010, 15, 52-57.
- [40] Huang X.W., Li L., Tu Q., Wang J.C., Liu W.M., Wang X.Q., etal., On-chip cell migration assay for quantifying the effectof ethanol on MCF-7 human breast cancer cells, Microfluid.Nanofluid., 2011, 10, 1333-1341.[Crossref]
- [41] Kim B.J., Wu M.M., Microfluidics for Mammalian CellChemotaxis, Ann. Biomed. Eng. 2012, 40, 1316-1327.[Crossref]
- [42] Liu T.J., Lin B.C., Qin J.H., Carcinoma-associated fibroblastspromoted tumor spheroid invasion on a microfluidic 3Dco-culture device, Lab Chip, 2010, 10, 1671-1677.[Crossref]
- [43] Wang L., Zhu J., Deng C., Xing W.L., Cheng J., An automatic andquantitative on-chip cell migration assay using self-assembledmonolayers combined with real-time cellular impedancesensing, Lab Chip, 2008, 8, 872-878.[Crossref]
- [44] Wang Z., Kim M.-C., Marquez M., Thorsen T., High-densitymicrofluidic arrays for cell cytotoxicity analysis, Lab Chip, 2007,7, 740-745.[Crossref]
- [45] Onuki-Nagasaki R., Nagasaki A., Hakamada K., Uyeda T.Q.P.,Fujita S., Miyake M., Miyake J., On-chip screening method forcell migration genes based on a transfection microarray, LabChip, 2008, 8, 1502-1506.[Crossref]
- [46] Timm D.M., Chen J., Sing D., Gage J.A., Haisler W.L., NeeleyS.K., et al., A high-throughput three-dimensional cell migrationassay for toxicity screening with mobile device-basedmacroscopic image analysis, Sci. Rep., 2013, 3, 1-8.
- [47] Nafday O.A., Lenhert S., High-throughput optical quality controlof lipid multilayers fabricated by dip-pen nanolithography,Nanotechnology, 2011, 22, 1-7.
- [48] Groves J.T., Mahal L.K., Bertozzi C.R., Control of cell adhesionand growth with micropatterned supported lipid membranes,Langmuir, 2001, 17, 5129-5133.[Crossref]
- [49] Tang F., Hughes J.A., Synthesis of a single-tailed cationic lipidand investigation of its transfection, J. Control. Release, 1999,62, 345-358.[Crossref]
- [50] Fayad W., Rickardson L., Haglund C., Olofsson M.H., D’ArcyP., Larsson R., et al., Identification of Agents that InduceApoptosis of Multicellular Tumour Spheroids: Enrichment forMitotic Inhibitors with Hydrophobic Properties, Chem. Biol.Drug Des., 2011, 78, 547-557.[Crossref]
- [51] Zhu J.-W., Nagasawa H., Nagura F., Mohamad S.B., Uto Y.,Ohkura K., Hori H., Elucidation of strict structural requirementsof Brefeldin A as an inducer of differentiation and apoptosis,Bioorg. Med. Chem., 2000, 8, 455-463.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_nanofab-2015-0004