Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |
Tytuł artykułu

Feasibility of lipid mechanical extraction from viableMonoraphidium minutum

Treść / Zawartość
Warianty tytułu
Języki publikacji
Background. Mechanical stress was investigated as a mean to harvest microalgal lipids without affecting algal cells’ viability. Monoraphidium minutum was cultivated in laboratory-scale photobioreactors and suspension cultures were submitted to mechanical stress to compare a cyclone, a centrifuge and a homogenizer. Lipid content within the extracellular medium was analyzed prior to and after treatment, and the amount of released lipids was quantified. Algal cell viability was also evaluated before and after treatment. Results. After mechanical-stress treatments, 7.0 to 12.7% of the intracellular lipids of Monoraphidium minutum were released and found in the extracellular medium, while recovered algal cells presented low levels of disruption after treatments. Conclusions. To the best of our knowledge, this is the first proof-of-concept demonstration on the use of mechanical stress for lipid extraction from viable microalgae. Certain level of centrifugation proved to make algae release around 10% of their lipids to the extracellular medium. This mostly exploratory work calls for deeper investigation, paving the way for a biofuel production based on continuous lipid recovery and microalgae reuses.

Opis fizyczny
  • Canada Research Chair
    in Applied Metabolic Engineering. Department of Chemical
    Engineering, École Polytechnique, CP 6079 Succ. Centre-Ville,
    Montréal QC, Canada H3C 3A7
  • Total SA, 2 place de la Coupole,
    La Défense 6, 92400 Courbevoie France
  • Total SA, 2 place de la Coupole,
    La Défense 6, 92400 Courbevoie France
  • Canada Research Chair
    in Applied Metabolic Engineering. Department of Chemical
    Engineering, École Polytechnique, CP 6079 Succ. Centre-Ville,
    Montréal QC, Canada H3C 3A7
  • [1] Cockerill S., Martin C., Are biofuels sustainable? TheEU perspective, Biotechnol. Biofuels, 2008, 1, 9,doi:10.1186/1754-6834-1-9[WoS][Crossref]
  • [2] Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J.,Lea-Smith D.J., Smith A.G., Biodiesel from algae: challengesand prospects, Curr. Opin. Biotechnol., 2010, 21, 277–286[PubMed][WoS][Crossref]
  • [3] Chisti Y., Biodiesel from microalgae, Biotechnol. Adv., 2007, 25,294–306[PubMed][Crossref]
  • [4] Brown L.M., Uptake of carbon dioxide from flue gas bymicroalgae, Energy Conv. Manag., 1996, 37, 1363-1367[Crossref]
  • [5] Pittman J., Dean A., Osundeko O., The potential of sustainablealgal biofuel production using wastewater resources, Biores.Technol., 2011, 102, 17–25[Crossref]
  • [6] Lardon L., Hélias A., Sialve B., Steyer J.P., Bernard O., Life-CycleAssessment of Biodiesel Production from Microalgae, Env. Sci.Technol., 2009, 43 (17), 6475–6481[Crossref]
  • [7] Gudin C, Therpenier C., Bioconversion of solar energy intoorganic chemicals by microalgae, Adv. Biotechnol. Processes,1986, 6, 73–110
  • [8] Grima E.M., Belarbi E.H., Acién Fernández F.G., Robles MedinaA., Chisti Y., Recovery of microalgal biomass and metabolites:process options and economics, Biotechnol. Adv., 2003, 20,491-515[Crossref]
  • [9] Nagle N., Lemke P. Production of methyl ester fuel frommicroalgae, App. Biochem. Biotechnol., 1990, 24, 355-361[Crossref]
  • [10] Yang J., Xu M., Zhang X., Hu Q., Sommerfeld M., Chen Y.,Life-cycle analysis on biodiesel production from microalgae:Water footprint and nutrients balance, Biores. Technol., 2011,102,159–165[Crossref]
  • [11] Haigh W.G., Method for purifying beta-carotene – EuropeanPatent 0666845, 2000
  • [12] Mendes-Pinto M.M., Raposo1 M.F.J., Bowen J., Young A.J.,Morais R., Evaluation of different cell disruption processeson encysted cells of Haematococcus pluvialis: effects onastaxanthin recovery and implications for bioavailability, J.App. Phycol., 2001, 13, 19-24
  • [13] Lee J.Y., Yoo C., Jun S.Y., Ahn C.Y., Oh H.M., Comparison ofseveral methods for effective lipid extraction from microalgae,Biores. Technol., 2010, 101, S75–S77[Crossref]
  • [14] Cadoret J.P., Bernard O., Lipid biofuel production withmicroalgae: potential and challenge. J. Soc. Biol, 2008, 202(3),201-11
  • [15] Solomon, J.A., Hand, R.E., Mann, R.C., Ultrastructural and FlowCytometric Analyses of Lipid Accumulation in Microalgae: ASubcontract Report. Solar Energy Research Institute SERI/STR-231-3089, 1986
  • [16] Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., et al., Reviewof the biological and engineering aspects of algae to fuelsapproach, Int. J. Agr. Biol. Engin., 2009, 2, 4
  • [17] Sheehan J., Dunahay T., Benemann J., Roessler P., A Look Backat the U.S. Department of Energy’s Aquatic Species Program –Biodiesel from Algae, 1998
  • [18] Barclay, W.R., Terry, K.L., Nagle, N.J., Weissman, J.C., Goebel,R.P., Potential of new strains of marine and inland salineadaptedmicroalgae for aquaculture. J. World Aquacult. Soc.,1987, 18, 218-228[Crossref]
  • [19] Kraipech W., Chen W., Dyakowski T., Nowakowski A.,The performance of the empirical models on industrialhydrocyclone design, Int. J. Mineral Proc., 2006, 80, 100– 115
  • [20] Cilliers J.J., Harrison S.T.L., The application ofmini-hydrocyclones in the concentration of yeast suspensions,Chem. Eng. J., 1997, 65, 21-26[Crossref]
  • [21] Habibian M., Pazouki M., Ghanaie H., Abbaspour-Sani K.,Application of hydrocyclone for removal of yeasts from alcoholfermentations broth, Chem. Eng. J., 2008, 138, 30-34
  • [22] Elsayed E.A. Medronho R.A., Wagner R., Deckwer W.-D., Useof Hydrocyclones for Mammalian Cell Retention: SeparationEfficiency and Cell Viability (Part 1), Animal Cell Technol. MeetsGenom., 2006, 2, 679-682[Crossref]
  • [23] Yamamoto K., Shimizu N., Obi S., Kumagaya S., Taketani Y.,Kamiya A., Ando J., Involvement of cell surface ATP synthase inflow-induced ATP release by vascular endothelial cells, AJP –Heart Circulat. Physiol., 2007, 293, 1646-1653
  • [24] Heasman M., Diemar J., O’Connor W., Sushames T., Foulkes L.,Development of extended shelf-life microalgae concentratediets harvested by centrifugation for bivalve molluscs,Aquacult. Res., 2000, 31, 637-659[Crossref]
  • [25] Harun R., Singh M., Forde G.M., Danquah M.K., Bioprocessengineering of microalgae to produce a variety of consumerproducts, Renew. Sustain. En. Rev., 2010, 14, 1037–1047[Crossref][WoS]
  • [26] Hopkins T.R., Physical and chemical cell disruption for therecovery of intracellular proteins, Bioproc. Technol., 1991, 12,57-83
  • [27] Frangos J.A., McIntire L.V., Eskin S.G., Shear Stress InducedStimulation of Mammalian Cell Metabolism, Biotechnol.Bioeng., 1987, 32, 1053-1060[Crossref]
  • [28] Wylock C., Larcy A., Colinet P., Cartage T., Haut B., Studyof the CO2 Transfer Rate in a Reacting Flow for the RefinedSodium Bicarbonate Production Process; COMSOL Conference,Hannover, 2008
  • [29] Bligh E.G., Dyer W.J., A rapid method of total lipid extractionand purification, Can. J. Biochem. Physiol., 1959, 37, 911-917[Crossref]
  • [30] Drochioiu G., Turbidimetric lipid assay in seed flours, J. FoodLip., 2005, 12, 12-22[Crossref]
  • [31] Del Pilar M. Saavedra S., The effect of cold storage on cellviability and composition of two benthic diatoms, Aquacult.Eng., 2006, 34, 131–136[Crossref]
  • [32] Bester E., Wolfaardt G., Joubert L., Gamy K., Saftic S.,Planktonic-Cell Yield of a Pseudomonad Biofilm, App. Environ.Microbiol., 2005, 71, 7792-7798[Crossref]
  • [33] Rodriguez-Ruiz J., Belarbi E, García Sanchez J.L., Alonso D.L.,Rapid simultaneous lipid extraction and transesterification forfatty acid analyses, Biotechnol. Techniq., 1998, 12, 689-691
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.