Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 22 | 1 | 11-23
Tytuł artykułu

Genetic epilepsies. Remarks on the proposed “Organization of the Epilepsies”*

Treść / Zawartość
Warianty tytułu
Języki publikacji
Introduction. Genetic findings in several epilepsy syndromes provide insights into the pathophysiology of specific subtypes of epilepsy and into mechanisms of epileptogenesis, because the genes encoding ion channels, and proteins associated to the vesical synaptic cycle, or involved in energy metabolism, influence neuronal excitability. Aim. The following aspects of genetic epilepsies will be discussed: new proposed “organization of the epilepsies”, genetic and other etiologies, electroclinical syndromes and their genetics and genetic testing in the epilepsies. Methods. The updated review is based on OMIM™ (Online Mendelian Inheritance in Man). Review and remarks. Because of the vast genetic and phenotypic heterogeneity, bridging genotype and phenotype remains a major challenge in epilepsy genetics. The so-called “idiopathic” epilepsies are genetically determined. The new ILAE proposal on the “organization” of the epilepsies takes into account the genetic advances. However, despite proposed changes in the nomenclature, the concept of the electroclinical syndrome, i.e. seizure types, age-dependent onset, electroencephalographic criteria, and concomitant symptoms, such as movement disorders or developmental delay, remain important criteria to group the epilepsies. Although also the differentiation “generalized” versus “focal” is nowadays discussed critically, for practical reasons these categories remain valid. Similarly the categories “benign” syndromes of early childhood, epileptic encephalopathies, and fever-associated syndromes, have their utility. Conclusions. The large number of genetic defects in the epilepsies complicates their analysis. However, it is anticipated that novel genetic methods, that are able to analyze all known genes at a reasonable price, will help identify novel diagnostic and therapeutic avenues, including prognostic and genetic counseling. Today it is already possible to include into genetic testing genes responsible for the side effects of AEDs. In addition, for some epilepsy phenotypes it has became possible to predict the most efficacious antiepileptic drugs for patients based on their genetic makeup. Thus, the development of individualized medicine is expected to greatly improve the management of epilepsy patients.

Opis fizyczny
  • Department of Neurology, University Zürich, Zürich, Switzerland,
  • Abou-Khalil B., Ge Q., Desai R., Ryther R., Bazyk A., Bailey R. et al.:Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology 2001, 57: 2265–2272.
  • Berg A.T., Cross J.H.:Classification of epilepsies and seizures: historical perspective and future directions. Handb. Clin. Neurol., 2012, 107: 99–111.
  • Berg A.T., Berkovic S.F., Brodie M.J., Buchhalter J., Cross J.H., van Emde Boas W. et al.:Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 2010, 51: 676–685.[Crossref]
  • Berkovic S.F., Heron S.E., Giordano L., Marini C., Guerrini R., Kaplan R.E. et al.:Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann. Neurol., 2004, 55: 550–557.[PubMed][Crossref]
  • Bertrand D., Picard F., Le Hellard S., Weiland S., Favre I., Phillips H. et al.:How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia, 2002, 43 (Suppl 5): 112–122.[Crossref][PubMed]
  • Camfield P., Camfield C.:Idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTC): a population-based cohort with >20 year follow up for medical and social outcome. Epilepsy and Behav., 2010, 18: 61–63.[PubMed]
  • Carvill G.L., Heavin S.B., Yendle S.C., McMahon J.M., O'Roak B.J., Cook J. et al.:Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet., 2013, 45: 825–830.
  • Delgado-Escueta A.V., Greenberg D.A., Treiman L., Liu A., Sparkes R.S., Barbetti A. et al.:Mapping the gene for juvenile myoclonic epilepsy. Epilepsia, 1989, 30 (Suppl 4): S8–18; discussion S24–S27.[Crossref]
  • Deprez L., Jansen A., De Jonghe P.:Genetics of epilepsy syndromes starting in the first year of life. Neurology, 2009, 72: 273–281.[PubMed][Crossref]
  • Dibbens L.M., Kneen R., Bayly M.A., Heron S.E., Arsov T., Damiano J.A. et al.:Recurrence risk of epilepsy and mental retardation in females due to parental mosaicism of PCDH19 mutations. Neurology, 2011, 76: 1514–1519.[Crossref]
  • Du W., Bautista J.F., Yang H., Diez-Sampedro A., You S.A., Wang L. et al.:Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet., 2005, 37: 733–738.[PubMed][Crossref]
  • El Helou J., Navarro V., Depienne C., Fedirko E., LeGuern E., Baulac M. et al.:K-complex induced seizures in autosomal dominant nocturnal frontal lobe epilepsy. Clin. Neurophysiol., 2008, 119: 2201–2204.[PubMed][Crossref]
  • Epi4K Consortium; Epilepsy Phenome/Genome Project, Allen A.S., Berkovic S.F., Cossette P., Delanty N., Dlugos D., Eichler E.E., Epstein M.P. et al.:De novo mutations in epileptic encephalopathies. Nature, 2013, 501: 217–221.
  • EPICURE Consortium; EMINet Consortium, Steffens M., Leu C., Ruppert A.K., Zara F., Striano P., Robbiano A. et al.:Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum. Mol. Genet., 2012a, 21: 5359–5372.
  • EPICURE Consortium, Leu C., de Kovel C.G., Zara F., Striano P., Pezzella M., Robbiano A.:Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies. Epilepsia, 2012b, 53: 308–318.
  • Gene Tests website ().
  • Genton P., Bureau M.:Epilepsy with myoclonic absences. CNS Drugs, 2006, 20: 911–916.[PubMed][Crossref]
  • Granata T., Cross H., Theodore W., Avanzini G.:Immune-mediated epilepsies. Epilepsia, 2011, 52 (Suppl 3): 5–11.[PubMed][Crossref]
  • Greenberg D.A., Durner M., Keddache M., Shinnar S., Resor S.R., Moshe S.L. et al.:Reproducibility and complications in gene searches: linkage on chromosome 6, heterogeneity, association, and maternal inheritance in juvenile myoclonic epilepsy. Am. J. Hum. Genet., 2000, 66: 508–516.[Crossref]
  • Guerrini R., Sanchez-Carpintero R., Deonna T., Santucci M., Bhatia K.P., Moreno T. et al.:Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia, 2002, 43: 1224–1229.[Crossref][PubMed]
  • Huber K.M., von Spiczak S., Helbig I., Stephani U.:Genetics of the idiopathic generalized epilepsies. Epileptologie, 2009, 26: 112–120.
  • Janz D.:Juvenile myoclonic epilepsy. Epilepsy with impulsive petit mal. Cleve. Clin. J. Med., 1989, 56 (Suppl 1): S23–S33; discussion S40–S42.
  • Juberg R.C., Hellman C.D.:A new familial form of convulsive disorder and mental retardation limited to females. Journal of Pediatrics, 1971, 79: 726–732.[Crossref]
  • Kasperaviciute D., Catarino C.B., Matarin M., Leu C., Novy J., Tostevin A. et al.:Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain, 2013, 136: 3140–3150.[Crossref]
  • Katano M., Numata T., Aguan K., Hara Y., Kiyonaka S., Yamamoto S. et al.:The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium, 2012, 51:179–185.[Crossref]
  • Kato M., Saitoh S., Kamei A., Shiraishi H., Ueda Y., Akasaka M. et al.:A longer polyalanine expansion mutation in the ARX Gene causes Early Infantile Epileptic Encephalopathy with Suppression-Burst Pattern (Ohtahara Syndrome). Am. J. Hum. Genet., 2007, 81: 361–366.[Crossref]
  • Kuryatov A., Gerzanich V., Nelson M., Olale F., Lindstrom J.:Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human alpha4beta2 nicotinic acetylcholine receptors. J. Neurosci., 1997, 17: 9035–9047.
  • Lachos J., Zattoni M., Wieser H.G., Fritschy J.M., Langmann T., Schmitz G. et al.:Characterization of the gene expression profile of human hippocampus in mesial temporal lobe epilepsy with hippocampal sclerosis. Hindawi Publishing Corporation. Epilepsy Research and Treatment, 2011, Article ID 758407, doi:10.1155/2011/758407.[Crossref]
  • Mantegazza M., Gambardella A., Rusconi R., Schiavon E., Annesi F., Cassulini R.R. et al.:Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. USA, 2005, 102: 18177–18182.[Crossref]
  • Mas C., Taske N., Deutsch S., Guipponi M., Thomas P., Covanis A. et al.:Association of the connexin36 gene with juvenile myoclonic epilepsy. J. Med. Genet., 2004, 41: 93.[Crossref]
  • Matsushima N., Hirose S., Iwata H., Fukuma G., Yonetani M., Nagayama C. et al.:Mutation (Ser284Leu) of neuronal nicotinic acetylcholine receptor alpha 4 subunit associated with frontal lobe epilepsy causes faster desensitization of the rat receptor expressed in oocytes. Epilepsy Res., 2002, 48: 181–186.[Crossref]
  • Miraglia del Giudice E., Coppola G., Scuccimarra G., Cirillo G., Bellini G., Pascotto A.:Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor. Eur. J. Hum. Genet., 2000, 8: 994–997.[Crossref]
  • Mirza N., Vasieva O., Marson A.G., Pirmohamed M.:Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery. Hum. Mol. Genet., 2011, 20: 4381–4394.[PubMed][Crossref]
  • Nicita F., De Liso P., Danti F.R., Papetti L., Ursitti F., Castronovo A.:The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure, 2012, 21: 3–11.[Crossref][PubMed]
  • Nobile C., Michelucci R., Andreazza S., Pasini E., Tosatto S.C., Striano P.:LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum. Mutat., 2009, 30: 530–536.
  • Online Mendelian Inheritance in Man (OMIM) 308350, 300203, 609302, 602926, 182810, 602235, 300429.
  • Ottman R., Hirose S., Jain S., Lerche H., Lopes-Cendes I., Noebels J.L. et al.:Genetic testing in the epilepsies. Report of the ILAE Genetics Commission. Epilepsia, 2010, 51: 655–670.[PubMed][Crossref]
  • Ryan S.G., Chance P.F., Zou C.H., Spinner N.B., Golden J.A., Smietana S.:Epilepsy and mental retardation limited to females: an X-linked dominant disorder with male sparing. Nature Genetics, 1997, 17: 92–95.[Crossref]
  • Saitsu, H., Kato, M., Shimono, M., Senju, A., Tanabe, S., Kimura, T., Nishiyama, K. et al.:Association of genomic deletions in the STXBP1 gene with Ohtahara syndrome. (Letter) Clin. Genet., 2012, 81: 399–402.[Crossref]
  • Scheffer I.E., Turner S.J., Dibbens L.M., Bayly M.A., Friend K., Hodgson B. et al.:Epilepsy and mental retardation limited to females: an under-recognized disorder: Family tree of genealogical study. Brain, 2008, 131: 918–927.
  • Scheffer I.E., Berkovic S.F., Capovilla G., Connolly M.B., Guilhoto L., Hirsch E. et al.:The Organization of the Epilepsies: The Report of the ILAE Commission on Classification and Terminology (unpublished – send out for comments, 2014).
  • Shevell M.I., Sinclair D.B., Metrakos K.:Benign familial neonatal seizures: clinical and electroencephalographic characteristics. Pediatr. Neurol., 1986, 2: 272–275.[Crossref][PubMed]
  • Shi X., Huang M.C., Ishii A., Yoshida S., Okada M., Morita K. et al.:Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J. Hum. Genet., 2010, 55: 375–378.
  • Specchio N., Fusco L., Vigevano F.:Acute-onset epilepsy triggered by fever mimicking FIRES febrile infection–related epilepsy syndrome: The role of protocadherin 19 (PCDH19) gene mutation. Epilepsia, 2011, 52: 172–175.[Crossref]
  • Steinlein O.K., Mulley J.C., Propping P., Wallace R.H., Phillips H.A., Sutherland G.R. et al.:A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet., 1995, 11: 201–203.[Crossref]
  • Striano P., Striano S.:Speeding up disease diagnosis: a reliable option for epileptologist? Journal of Epileptology, 2013, 21: 69–70.
  • Striano P., Gambardella A., Coppola A., Di Bonaventura C., Bovo G., Diani E. et al.:Familial mesial temporal lobe epilepsy (FMTLE): a clinical and genetic study of 15 Italian families. J. Neurol., 2008, 255: 16–23.
  • Sugawara T., Yoshida S., Wada K., Hirose S., Kaneko S.:Detection of SCN1A mutations in patients with severe myoclonic epilepsy in infancy by custom resequence array. Journal of Epileptology, 2013, 21: 5–13.
  • Suls A., Jaehn J.A., Kecskés A., Weber Y., Weckhuysen S., Craiu D.C. et al. (EuroEPINOMICS RES Consortium):De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am. J. Hum. Genet., 2013, 93: 967–975.[Crossref]
  • Suzuki T., Delgado-Escueta A.V., Aguan K., Alonso M.E., Shi J., Hara Y. et al.:Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat. Genet. 2004, 36: 842–849.[Crossref]
  • Weber Y.G., Lerche H.:Genetik der idiopathischen Epilepsien. Nervenarzt, 2013, 84: 151–156.[Crossref]
  • Weiland S., Witzemann V., Villarroel A., Propping P., Steinlein O.:An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS. Lett., 1996, 398: 91–96.
  • Wieser H.G.:Electroclinical features of the psychomotor seizure. A stereoelectroencephalographic study of ictal symptoms and chronotopographical seizure patterns including clinical effects of intracerebral stimulation. G. Fischer-Butterworths, Stuttgart – London 1983, 242.
  • Wieser H.G. for the ILAE Commission on Neurosurgery of Epilepsy:Mesial Temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 2004, 45: 695–714.[Crossref][PubMed]
  • Yamada J., Zhu G., Okada M., Hirose S., Yoshida S., Shiba Y. et al.:A novel prophylactic effect of furosemide treatment on autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Epilepsy Res., 2013, 107: 127–137.[PubMed][Crossref]
  • Zara F., Specchio N., Striano P., Robbiano A., Gennaro E., Paravidino R. et al.:Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia, 2013, 54: 425–436.[Crossref][PubMed]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.