PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inhibition of ERN1/IRE1α (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme-1α), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F1), and HOXC6 (homeobox C6) in U87 glioma cells overexpressing dominant-negative ERN1/IRE1α defective in endoribonuclease (dnr-ERN1) as well as defective in both kinase and endonuclease (dn-ERN1) activity of ERN1/IRE1α. We have demonstrated that the expression of all studied genes is decreased at the mRNA level in cells with modified ERN1/IRE1α; TBX3, however, is increased in these cells as compared to control glioma cells. Changes in protein levels of E2F8, HOXC6, ATF3, and TBX3 corresponded to changes in mRNAs levels. We also found that two mutated ERN1/IRE1α have differential effects on the expression of studied transcripts. The presence of kinase and endonuclease deficient ERN1/IRE1α in glioma cells had a less profound effect on the expression of E2F8, HOXC6, and TBX3 genes than the blockade of the endoribonuclease activity of ERN1/IRE1α alone. Kinase and endonuclease deficient ERN1/IRE1α suppresses ATF3 and FOXF1 gene expressions, while inhibition of only endoribonuclease of ERN1/IRE1α leads to the up-regulation of these gene transcripts. The present study demonstrates that fine-tuning of the expression of proliferation related genes is regulated by ERN1/IRE1α an effector of endoplasmic reticulum stress. Inhibition of ERN1/IRE1α, especially its endoribonuclease activity, correlates with deregulation of proliferation related genes and thus slower tumor growth.
Wydawca
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2014-08-20
zaakceptowano
2014-12-22
online
2015-02-25
Twórcy
  • Department of Molecular Biology, Palladin
    Institute of Biochemistry National Academy of Sciences of Ukraine,
    9 Leontovycha St., 01601, Kyiv, Ukraine
  • Department of Molecular Biology, Palladin
    Institute of Biochemistry National Academy of Sciences of Ukraine,
    9 Leontovycha St., 01601, Kyiv, Ukraine
  • Department of Molecular Biology, Palladin
    Institute of Biochemistry National Academy of Sciences of Ukraine,
    9 Leontovycha St., 01601, Kyiv, Ukraine
  • Departments of Pediatrics, Bogomolets National
    Medical University, 13 Shevchenka Bvld., 01601, Kyiv, Ukraine
  • INSERM U1029 Angiogenesis and Cancer Microenvironment
    Laboratory, University Bordeaux 1, Talence 33405, France
  • Université de Bordeaux, IBGC UMR 5095 1, F-33077
    Bordeaux, France
  • Department of Molecular Biology, Palladin
    Institute of Biochemistry National Academy of Sciences of Ukraine,
    9 Leontovycha St., 01601, Kyiv, Ukraine
  • Department of Molecular Biology, Palladin
    Institute of Biochemistry National Academy of Sciences of Ukraine,
    9 Leontovycha St., 01601, Kyiv, Ukraine
Bibliografia
  • [1] Zhang K, Kaufman RJ. The unfolded protein response: a stresssignaling pathway critical for health and disease. Neurology 2006;66 (Suppl 1): S102–9.[Crossref]
  • [2] Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integratedendoplasmic reticulum stress responses in cancer. Cancer Res2007; 67: 10631–4.[Crossref][WoS]
  • [3] Wang S, Kaufman RJ. The impact of the unfolded protein responseon human disease. J Cell Biol 2012; 197: 857-67.
  • [4] Schröder M. Endoplasmic reticulum stress responses. Cell Mol LifeSci 2008 65: 862–94.[Crossref]
  • [5] Malhotra JD, Kaufman RJ. ER stress and its functional link tomitochondria: role in cell survival and death. Cold Spring HarbPerspect Biol 2011; 3: a004424.[WoS]
  • [6] Lenihan CR, Taylor CT. The impact of hypoxia on cell deathpathways. Biochem Soc Trans 2013; 41: 657–63.[Crossref][WoS]
  • [7] Minchenko OH, Kharkova AP, Bakalets TV, Kryvdiuk IV. Endoplasmicreticulum stress, its sensor and signaling systems and the role inthe regulation of gene expressions in malignant tumor growth andhypoxia. Ukr Biochem J 2013; 85(5): 5–16.[Crossref]
  • [8] Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. RegulatedIre1-dependent decay of messenger RNAs in mammalian cells. J CellBiol 2009; 186: 323–31.
  • [9] Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C,Lennon CJ, Kluger Y, Dynlacht DD. XBP1 controls diverse celltype- and condition-specific transcriptional regulatory networks.Molecular Cell 2007; 27: 53–66.[Crossref][WoS]
  • [10] Aragón T, van Anken E, Pincus D., Serafimova IM, Korennykh AV,Rubio CA, Walter P. Messenger RNA targeting to endoplasmicreticulum stress signalling sites. Nature. 2009; 457: 736–40.[WoS]
  • [11] Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, HigaA, Delugin M, Combe C, Loriot S, Cubel G, Dugot-Senant N, Vital A,Loiseau H, Gosline SJ, Taouji S, Hallett M, Sarkaria JN, AndersonK, Wu W, Rodriguez FJ, Rosenbaum J, Saltel F, Fernandez-ZapicoME, Chevet E. Posttranscriptional regulation of PER1 underlies theoncogenic function of IREα. Cancer Res. 2013; 73: 4732–43.[WoS]
  • [12] Minchenko OH, Kubaichuk KI, Minchenko DO, Kovalevska OV,Kulinich AO, Lypova NM. Molecular mechanisms of ERN1-mediatedangiogenesis. Int J Physiol Pathophysiol 2014; 5: 1-22.[Crossref]
  • [13] Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R,Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1signaling is essential for ischemia-induced vascular endothelialgrowth factor-A expression and contributes to angiogenesis andtumor growth in vivo. Cancer Res 2007; 67: 6700–7.[Crossref]
  • [14] Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, BouchecareilhM, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A,Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositolrequiringenzyme 1alpha is a key regulator of angiogenesis andinvasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107:15553–8.
  • [15] Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, PlatonovaN, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, MinchenkoD, Minchenko O, Moenner M. High epiregulin expression in humanU87 glioma cells relies on IRE1alpha and promotes autocrine growththrough EGF receptor. BMC Cancer 2013; 13: 597.[Crossref][WoS]
  • [16] Washkowitz AJ, Gavrilov S, Begum S, Papaioannou VE. Diversefunctional networks of Tbx3 in development and disease. WileyInterdiscip Rev Syst Biol Med 2012; 4: 273-83.[Crossref]
  • [17] Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, Teng XM,Zhang X, Huang J, Han ZG. E2F8 contributes to human hepatocellularcarcinoma via regulating cell proliferation. Cancer Res 2010;70: 782-91.
  • [18] Liu J, Edagawa M, Goshima H, Inoue M, Yagita H, Liu Z, Kitajima SRole of ATF3 in synergistic cancer cell killing by a combination ofHDAC inhibitors and agonistic anti-DR5 antibody through ER stressin human colon cancer cells. Biochem Biophys Res Commun 2014;445: 320-6.[WoS]
  • [19] Raspaglio G, Petrillo M, Martinelli E, Li Puma DD, Mariani M, DeDonato M, Filippetti F, Mozzetti S, Prislei S, Zannoni GF, ScambiaG, Ferlini C. Sox9 and Hif-2α regulate TUBB3 gene expression andaffect ovarian cancer aggressiveness. Gene 2014; 542: 173-81.[WoS]
  • [20] Rizzardi AE, Rosener NK, Koopmeiners JS, Isaksson Vogel R,Metzger GJ, Forster CL, Marston LO, Tiffany JR, McCarthy JB, TurleyEA, Warlick CA, Henriksen JC, Schmechel SC. Evaluation of proteinbiomarkers of prostate cancer aggressiveness. BMC Cancer 2014;14: 244.[Crossref][WoS]
  • [21] Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancergenetics and genomics of human FOX family genes. Cancer Lett2013; 328: 198-206.
  • [22] Weijts BG, Bakker WJ, Cornelissen PW, Liang KH, Schaftenaar FH,Westendorp B, de Wolf CA, Paciejewska M, Scheele CL, Kent L,Leone G, Schulte-Merker S, de Bruin A. E2F7 and E2F8 promoteangiogenesis through transcriptional activation of VEGFA incooperation with HIF1. EMBO J 2012; 31: 3871-84.[WoS][Crossref]
  • [23] Christensen J, Cloos P, Toftegaard U, Klinkenberg D, Bracken AP,Trinh E, Heeran M, Di Stefano L, Helin K. Characterization of E2F8,a novel E2F-like cell-cycle regulated repressor of E2F-activatedtranscription. Nucl Acids Res 2005; 33: 5458-70.[Crossref]
  • [24] Li J, Weinberg MS, Zerbini L, Prince S. The oncogenic TBX3 is adownstream target and mediator of the TGF-β1 signaling pathway.Mol Biol Cell 2013; 24: 3569-76.[Crossref]
  • [25] Du YB, Dong B, Shen LY, Yan WP, Dai L, Xiong HC, Liang Z, Kang XZ,Qin B, Chen KN. The survival predictive significance of HOXC6 andHOXC8 in esophageal squamous cell carcinoma. J Surg Res 2014;188: 442-50.
  • [26] Zhang Q, Jin XS, Yang ZY, Wei M, Liu BY, Gu QL. Upregulated Hoxc6expression is associated with poor survival in gastric cancerpatients. Neoplasma 2013; 60: 439-45.[WoS]
  • [27] Tamura M, Sasaki Y, Koyama R, Takeda K, Idogawa M, Tokino T.Forkhead transcription factor FOXF1 is a novel target gene of thep53 family and regulates cancer cell migration and invasiveness.Oncogene. 2014; 33: 4837-46.[WoS]
  • [28] Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S, Yu G, Wang W,Tang DD and Yan C. The activating transcription factor 3 proteinsuppresses the oncogenic function of mutant p53 proteins. J BiolChem 2014; 289: 8947-59.
  • [29] Wu ZY, Wei ZM, Sun SJ, Yuan J, Jiao SC. Activating transcriptionfactor 3 promotes colon cancer metastasis. Tumour Biol 2014;35(8):8329-34.[Crossref]
  • [30] Feng J, Sun Q, Wu T, Lu J, Qu L, Sun Y, Tian L, Zhang B, Li D, Liu M.Upregulation of ATF-3 is correlated with prognosis and proliferationof laryngeal cancer by regulating Cyclin D1 expression. Int J Clin ExpPathol 2013; 6: 2064-70.
  • [31] Sato A, Nakama K, Watanabe H, Satake A, Yamamoto A, Omi T,Hiramoto A, Masutani M, Wataya Y, Kim HS. Role of activatingtranscription factor 3 protein ATF3 in necrosis and apoptosisinduced by 5-fluoro-2’-deoxyuridine. FEBS J 2014; 281: 1892-900.[WoS]
  • [32] Ahmad A, Ahmad S, Malcolm KC, Miller SM, Hendry-Hofer T,Schaack JB, White CW. Differential regulation of pulmonary vascularcell growth by hypoxia-inducible transcription factor-1alpha andhypoxia-inducible transcription factor-2alpha. Am J Respir Cell MolBiol 2013; 49: 78-85.
  • [33] Bangoura G, Yang LY, Huang GW, Wang W. Expression of HIF-2alpha/EPAS1 in hepatocellular carcinoma. World J Gastroenterol 2004; 10:525-30.[Crossref]
  • [34] Sasai K, Akagi T, Aoyanagi E, Tabu K, Kaneko S, Tanaka S.O6-methylguanine-DNA methyltransferase is downregulated intransformed astrocyte cells: implications for anti-glioma therapies.Mol Cancer 2007, 6: 36.
  • [35] Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, LypovaNM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies thehypoxic regulation of the expression of TP53-related genes in U87glioma cells. Endoplasmic Reticulum Stress in Diseases 2014; 1:18-26.
  • [36] Minchenko DО, Kubajchuk КІ, Ratushna OO, Komisarenko SV,Minchenko OH. The effect of hypoxia and ischemic condition on theexpression of VEGF genes in glioma U87 cells is dependent fromERN1 knockdown. Adv Biol Chem 2012; 2: 198-206.[Crossref]
  • [37] Minchenko OH, Opentanova IL, Minchenko DO, Ogura T, EsumiH. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 2004; 576: 14-20.
  • [38] Bochkov VN, Philippova M, Oskolkova O, Kadl A, FurnkranzA, Karabeg E, Breuss J, Minchenko OH, Mechtcheriakova D,Hohensinner P, Rychli K, Wojta J, Resink T, Binder BR, Leitinger N.Oxidized phospholipids stimulate angiogenesis via induction ofVEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating anovel role for lipid oxidation in progression and destabilization ofatherosclerotic lesions. Circ Res 2006; 99: 900-8.
  • [39] Melboucy-Belkhir S, Pradère P, Tadbiri S, Habib S, Bacrot A, BrayerS, Mari B, Besnard V, Mailleux AA, Guenther A, Castier Y, Mal H,Crestani B, Plantier L. Forkhead Box F1 (FOXF1) represses cellgrowth, COL1 and ARPC2 expression in lung fibroblasts in vitro. Am JPhysiol Lung Cell Mol Physiol. 2014; 307: L838-47.
  • [40] Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded proteinresponse in cancer therapy. Methods Enzymol. 2011; 491: 37–56.[WoS]
  • [41] Lee AS. GRP78 induction in cancer: therapeutic and prognosticimplications. Cancer Res. 2007; 67: 3496–9.[Crossref]
  • [42] Johnson GG, White MC, Grimaldi M. Stressed to death: targetingendoplasmic reticulum stress response induced apoptosis ingliomas. Curr Pharm Des. 2011; 17: 284-92.[Crossref]
  • [43] Endo Y, Uzawa K, Mochida Y, Shiiba M, Bukawa H, Yokoe H, TanzawaH. Sarcoendoplasmic reticulum Ca(2+) ATPase type 2 downregulatedin human oral squamous cell carcinoma. Int J Cancer. 2004;110: 225-31.
  • [44] White MC, Johnson GG, Zhang W, Hobrath JV, Piazza GA, GrimaldiM. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca(2+)ATPase, induces endoplasmic reticulum stress response, andexerts toxicity in glioma cells: Relevant similarities to and importantdifferences from celecoxib. J Neurosci Res. 2013; 91: 393-406. Int JCancer. 2004; 110: 225-31.
  • [45] Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, KaminskaB. Endoplasmic reticulum stress triggers autophagy in malignantglioma cells undergoing cyclosporine a-induced cell death.Oncogene. 2013; 32: 1518-29. [Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_ersc-2015-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.