PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 21 | 4 | 605-616
Tytuł artykułu

Bioindication assessment of activated sludge Adaptation in a Lab-Scale Experiment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adaptation of activated sludge from the Hajdow sewage treatment plant in a laboratory SBR was studied. The structure of the ciliate assembly was considered as a criterion. 32 ciliate species were found during the experiment. The composition and changes in the ciliate community structure during the process of activated sludge adaptation was examined. In the process of adaptation, reduction was observed in the number of ciliate species together with an increase in assembly total abundance. The decrease in the Shannon diversity index and equitability index in the adaptation process was observed. In the process of adaptation, two states of ciliate assembly were marked out - unstable transient period and stable period. During the transient period, reduction of ammonium utilization efficiency down to 50% and its subsequent increase up to 80% in the stable period were observed. In the transient period, the Simpson dominance index remained low but increased in the stable period. At a temperature of 10°C, the transient period lasted from six to nine days. After the stabilization process, the diversity of the ciliate assemblage remained at a lower level. Rarefaction methods showed that the number of potential ecological niches of ciliate amounted to 30 in the adaptation period, whereas there were only 15-20 ecological niches in adapted sludge.
Słowa kluczowe
Wydawca

Rocznik
Tom
21
Numer
4
Strony
605-616
Opis fizyczny
Daty
online
2015-02-02
Twórcy
autor
  • I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01601 Kiev, Ukraine, rbabko@ukr.net
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland
Bibliografia
  • [1] De Gregorio C, Caravelli AH, Zaritzky NE. Application of biological indices and a mathematical model for the detection of metal coagulant overload in a laboratory scale activated sludge reactor with phosphate simultaneous precipitation. Chem Eng J. 2011;172(1):52-60. DOI: 10.1016/j.cej.2011.05.063.[Crossref]
  • [2] Barton LE, Auffan M, Bertrand M, Barakat M, Santaella C, Masion A, et al. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ Sci Technol. 2014;48(13):7289-7296. DOI: 10.1021/es404946y.[Crossref][WoS]
  • [3] Lim Y, Kim DJ. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis. Biores Technol. 2014;165:111-115. DOI: 10.1016/j.biortech.2014.03.021.[Crossref]
  • [4] Huang P, Li L, Kotay SM, Goel R. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal. Water Res. 2014;53:153-167. DOI: 10.1016/j.watres.2013.12.035.[Crossref][WoS]
  • [5] Barbusiński K. Adaptation of activated sludge to laboratory research conditions. Environ Protect Eng. 1991;17(3-4):57-65.
  • [6] Senthilnathan PR., Ganczarczyk JJ. Adaptation and deadaptation kinetics of activated sludge. Proc Indust Waste Conf. 1989;43:301-307.
  • [7] Ohtsuki T, Sakurai K, Noda S, Ichihara J, Masuda T, Ui S. Development of activated sludge adapted to high concentrations of phenol and enhancement of its phenol removal ability by addition of a processed lignite. Indian J Sci Technol. 2009;2(10):1-4.
  • [8] Thiem LT, Alkhatib EA. In situ adaptation of activated sludge by shock loading to enhance treatment of high ammonia content petrochemical wastewater. J Water Pollut Control Fed. 1988;60(7):1245-1252.
  • [9] Washington DR, Hetling LJ, Rao SS. Long-term adaptation of activated-sludge organisms to accumulated sludge mass. Symposium on Environmental Biochemistry. Biochem J. 1972;126(1):35.
  • [10] Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources. Biores Technol. 2014;65:50-59. DOI: 10.1016/j.biortech.2014.04.024.[Crossref]
  • [11] Orozco AMF, Lobo CC, Contreras EM, Zaritzky NE. Biodegradation of bisphenol-A (BPA) in activated sludge batch reactors: Analysis of the acclimation process. Internat Biodeter Biodegrad. 2013;85:392-399. DOI: 10.1016/j.ibiod.2013.09.005.[Crossref]
  • [12] Van Dierdonck J, Van den Broeck R, Vervoort E, Van Impe J, Smets I. The effect of alternating influent carbon source composition on activated sludge bioflocculation. J Biotechnol. 2013;167(3):225-234. DOI: 10.1016/j.jbiotec.2013.07.012.[Crossref][WoS]
  • [13] Xu S, Zhang Y, Sims A, Bernards M, Hu Z. Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation. Water Res. 2013;47(7):2307-2314. DOI: 10.1016/j.watres.2013.01.048.[Crossref]
  • [14] De Gregorio C, Caravelli A, Zaritzky N. Application of a combined biological and chemical system for the treatment of phosphorus-containing wastewater from the food industry. Proc Food Sci. 2011;1:1841-1847. DOI: 10.1016/j.profoo.2011.09.270.[Crossref]
  • [15] Sabliy L, Kuzminskiy Y, Gvozdyak P, Łagód G. Anaerobic and aerobic treatment of wastewater of milk plants. Proc ECOpole. 2009;3(2):373-378.
  • [16] Gryta A, Frąc M, Oszust K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl Biochem Biotechnol. 2014 (in print). DOI 10.1007/s12010-014-1131-8.[WoS][Crossref]
  • [17] Bazhenov VI., Kanunnikova MA. The mechanism of activated sludge adaptation to low concentrations of oxygen. Dostizenia Nauki Tehn APK. 2012;9:82-84.
  • [18] Anielak A, Piaskowski K. Badania laboratoryjne oczyszczania ścieków osadem czynnym z zastosowaniem zeolitu i PIX-u. Rocz Ochr Środow./Ann Set Environ Protect. 2000;2:281-295.
  • [19] Van den Kerkhof P, Gins G, Van den Broeck R, Van Impe JFM. Multivariate assessment of activated sludge stability in lab-scale experiments. Process Biochem. 2013;48(11):1789-1793. DOI: 10.1016/j.procbio.2013.07.016.[WoS][Crossref]
  • [20] Van den Broeck R, Van Impe JFM., Smets IYM. Assessment of activated sludge stability in lab-scale experiments. J Biotechnol. 2009;141(3-4):147-154. DOI: 10.1016/j.jbiotec.2009.02.019.[WoS][Crossref]
  • [21] Li XY, Yang SF. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007;41(5):1022-1030. DOI: 10.1016/j.watres.2006.06.037.[WoS][Crossref]
  • [22] Masse A, Sperandio M, Cabassud C. Comparison of sludge characteristics and performance of a submerged membrance bioreactor and an activated sludge process at high solids retention time. Water Res. 2006;40(12):2405-2415. DOI: 10.1016/j.watres.2006.04.015.[Crossref]
  • [23] Agridiotis V, Forster CF, Cartiell-Marquet C. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics. Biores Technol. 2007;98(15):2926-2934. DOI: 10.1016/j .biortech.2006.10.004.[Crossref]
  • [24] Mendrycka M, Stawarz M. Possibilities of applications of biocomponent for biological processes of tanning sewage by activated sludge-aided method. Inż Ekol. 2012;28:43-56.
  • [25] Curds CR. A theoretical study of factors influencing the microbial population dynamics of the activated sludge process - I The effects of diurnal variations of sewage and carnivorous ciliated protozoa. Water Res. 1973;7(9):1269-1284. DOI: 10.1016/0043-1354(73)90004-3.[Crossref]
  • [26] Martín-Cereceda M, Pérez-Uz B, Serrano S, Guinea A. Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors. Microbiol Res. 2001;156(3):225-238. DOI: 10.1078/0944-5013-00105.[Crossref]
  • [27] Zhou K, Xu M, Liu B, Cao H. Characteristics of microfauna and their relationships with the performance of an activated sludge plant in China. J Environ Sci. 2008;20(4):482-486. DOI: 10.1016/S1001-0742(08)62083-5.[WoS][Crossref]
  • [28] Tsang YF, Hua FL, Chua H, Sin SN, Wang YJ. Optimization of biological treatment of paper mill effluent in a sequencing batch reactor. Biochem Eng J. 2007;34(3):193-199. DOI: 10.1016/j.bej.2006.12.004.[Crossref][WoS]
  • [29] Jenne R, Cenens C, Geeraerd AH, Van Impe JF. Towards on-line quantification of flocs and filaments by image analysis. Biotechnol Lett. 2002;24(11):931-935. DOI: 10.1023/A:1015512712843.[Crossref]
  • [30] Jenne R, Banadda EN, Smets IY, Deurinck J, Van Impe JF. Detection of filamentous bulking problems: developing an image analysis system for sludge composition monitoring. Microsco Microanal. 2007;13(1):36-41. DOI: 10.1017/S1431927607070092.[Crossref]
  • [31] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377.
  • [32] Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Paleon Electro. 2001;4(1):1-9.
  • [33] Shannon CE, Weaver W. The Mathematical Theory of Communication. Chicago: University of Illinois Press, Urbana; 1949, reprint 1998.
  • [34] Gove IH, Patil GP, Swindel BF, Taille C. Ecological diversity and forest management. Handbook of Statistic 12. Patil GP, Rao CR, editors. Amsterdam, London, New York, Tokyo: Elsevier Sci; 1994;12:409-462. DOI: 10.1016/S0169-7161(05)80014-8.[Crossref]
  • [35] Washington HG. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Res. 1984;18(6):653-694. DOI: 10.1016/0043-1354(84)90164-7.[Crossref]
  • [36] Magurran AE. Ecological Diversity and its Measurements. Princeton: Princeton University Press; 1988.
  • [37] Chomczyńska M, Montusiewicz A, Malicki J, Łagód G. Application of saprobes for bioindication of wastewater quality. Environ Eng Sci. 2009;26(2):289-295. DOI: 10.1089/ees.2007.0311.[Crossref]
  • [38] Kim DJ, Lee DI, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Biores Technol. 2006;97(3):459-468. DOI: 10.1016/j.biortech.2005.03.032.[Crossref]
  • [39] Babko R, Łagód G, Jaromin-Gleń KM. Abundance and structure of ciliated protozoa community at the particular devices of “Hajdów” WWTP. Ann Set Environ Protect. 2012;14:56-68.
  • [40] Jaromin-Gleń K, Babko R, Łagód G, Sobczuk H. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdow” wastewater treatment plant. Ecol Chem Eng S. 2013;20(1):127-139. DOI: 10.2478/eces-2013-0010.[WoS][Crossref]
  • [41] Rasool K, Ahn DH, Lee DS. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions. Bioresour Technol. 2014;162:373-378. DOI: 10.1016/j.biortech.2014.03.108.[Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_eces-2014-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.