Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 36 | 2 | 225-238
Tytuł artykułu

Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

Treść / Zawartość
Warianty tytułu
Języki publikacji
Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI) engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

Opis fizyczny
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Słoneczna 46 A, 10-710 Olsztyn, Poland,
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Słoneczna 46 A, 10-710 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Słoneczna 46 A, 10-710 Olsztyn, Poland
  • Aesoy V., Valland H., 1996. Hot surface assisted compression ignition of natural gas in a direct injection Diesel engines. SAE Paper, 960767
  • Assanis D.N., Filipi Z.S., Fiveland S.B, Syrimis M., 2003. A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. J. Eng. Gas Turbines Power, 125, 450-457. DOI: 10.1115/1.1563238.
  • Bade Shrestha S.O., Narayanan G., 2008. Landfill gas with hydrogen addition - A fuel for SI engines. Fuel, 87, 3616-3626. DOI: 10.1016/j.fuel.2008.06.019.
  • Börjesson P., Berglund M., 2006. Environmental systems analysis of biogas systems - Part I: Fuel-cycle emissions. Biomass Bioenergy, 30, 469-485. DOI: 10.1016/j.biombioe.2005.11.014.
  • Budzianowski W.M., 2012. Sustainable biogas energy in Poland: Prospects and challenges. Renewable Sustainable Energy Rev., 16, 342-349. DOI: 10.1016/j.rser.2011.07.161.
  • Carlucci P., Ficarella A., Laforgia D., 2003. Effects of pilot injection parameters on combustion for common rail diesel engines. SAE Technical Paper 2003-01-0700. DOI: 10.4271/2003-01-0700.
  • Chase M.W., 1998. Nist - Janaf thermochemical tables. National institute of Standards and Technology, Geithersburg.
  • Doijode E.D., Tewari P., Basavarajappa Y.H., Banapurmath N.R., Yaliwal V.S., 2013. Experimental studies on manifold injected CNG-biodiesel dual fuel engine. Int. J. Emerging Technol. Adv. Eng., Special Issue 3: ICERTSD 2013, 3, 77-83.
  • Heywood J.B. 1988. Internal Combustion Engines Fundamentals. McGraw-Hill International.
  • Korakianitis T., Namasivayam A.M., Crookes R.J., 2011. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog. Energy Combust. Sci. , 37, 89-112. DOI: 10.1016/j.pecs.2010.04.002.
  • Korakianitis T., Namasivayam A. M., Crookes R.J., 2011. Diesel and rapeseed methyl ester (RME) pilot fuels for hydrogen and natural gas dual-fuel combustion in compression-ignition engines. Fuel, 90, 2384-2395. DOI: 10.1016/j.fuel.2011.03.005.
  • Koszalka G., 2014. Model of operational changes in the combustion chamber tightness of a diesel engine. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16, 133-139.
  • Kuti O.A., Zhu J., Nishida K., Wang X., Huang Z., 2013. Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel, 104, 838-846. DOI: 10.1016/j.fuel.2012.05.014.
  • Mikulski M., 2014. Budowa dwufazowego modelu spalania w wielopaliwowym silniku o zapłonie samoczynnym. PhD Thesis. UWM Olsztyn, Wydział Nauk Technicznych.
  • Mikulski M., Wierzbicki S., Piętak A., 2015. The multi-phase, zero-dimensional, computational model of a multi-fuel CI engine fueled with gaseous fuel with divided injection of liquid fuel. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 17, 42-48. DOI: 10.17531/ein.2015.1.6.
  • Mikulski M., Wierzbicki S., Śmieja M., Matijošius J., 2015. Effect of CNG in a fuel dose on compression-ignition engine’s combustion process. Transport, 30, 162-171. DOI: 10.3846/16484142.2015.1045938.
  • Motyl K., Lisowski M., 2008. Wpływ temperatury początkowej i składu mieszaniny palnej na pracę silnika HCCI zasilanego biogazem. Inżynieria Rolnicza, 1, 311-317.
  • Papagiannakis R.G., Hountalas D.T., Rakopoulos C.D., 2007. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine. Energy Convers. Manage., 48, 2951-2961. DOI: 10.1016/j.enconman.2007.07.003.
  • Piętak A., Mikulski M., 2011. On the modeling of pilot dose ignition delay in a dual-fuel, self ignition engine. Combust. Engines, 3 (146), 94-102.
  • Roy S., Das A.K., Banerjee R., Bose P.K., 2014. A TMI based CNG dual-fuel approach to address the soot-NOx-BSFC trade-off characteristics of a CRDI assisted diesel engine - an EPA perspective. J. Nat. Gas Sci. Eng., 20, 221-240. DOI: 10.1016/j.jngse.2014.06.023.
  • Ryu K., 2013. Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel-CNG dual fuel. Energy Convers. Manage., 111, 721-730. DOI: 10.1016/j.apenergy.2013.05.046.
  • Selim M.Y.E., 2004. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition. Energy Convers. Manage., 45, 411-425. DOI: 10.1016/S0196-8904(03)00150-X.
  • Semin A., Idris A., Bakar, R. A, 2009. Effect of port injection CNG engine using injector nozzle multi holes on air-fuel mixing in combustion chamber. Eur. J. Sci. Res., 34 (1), 16-24.
  • Stelmasiak Z., 2014. Limitations of enrichment of gaseous mixture in dual fuel engines. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (4), 537-544.
  • Szczurowski K., Radkowski S., Walczak D., Zieliński Ł., 2014. The effect of addition of LPG and camelina oil esters on noise and vibration in a dual fuel CI engine. Diagnostyka, 15 (4), 53-57.
  • Wierzbicki S., 2014. Laboratory control and measurement system of a dual-fuel compression ignition combustion engine operating in a cogeneration system. Solid State Phenomena. , 210, 200-205. DOI: 10.4028/
  • Yan F., Wang J., 2011. Common Rail injection system iterative learning control based parameter calibration for accurate fuel injection quantity control. Int. J. Automot. Technol., 12, 149-157. DOI: 10.1007/s12239-011-0019-7.
  • Yoon S.H., Lee C.S., 2011. Experimental investigation on the combustion and exhaust emission characteristics of biogas-biodiesel dual-fuel combustion in a CI engine. Fuel Process. Technol., 92, 992-1000. DOI: 10.1016/j.fuproc.2010.12.021.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.