PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Carbonyl and sulfhydryl groups of chicken meat proteins after dietary modulation with selenium

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to investigate the effects of selenium modulation on the alteration of carbonyl and sulfhydryl groups in proteins in chicken breast and leg meat. Selenium, in the form of sodium selenite and selenized yeast, was applied to broiler chicken at 0.26, 0.38 and 0.50 mg Se kg-1. The alteration of protein carbonyl and sulfhydryl groups, as well as total antioxidative potential of breast and leg meat were analyzed in fresh, chilled and frozen material. Protein reactive groups were effectively protected against oxidatively induced changes (carbonyl groups formation) by dietary selenium supplementation, during frozen storage of both types of chicken muscles, either with white fibre domination (breast) or with red fibre domination (leg). The inorganic form of selenium was effective in decreasing the loss of protein sulfhydryl groups in muscles with red fibre domination during frozen storage. In conclusion, selenium compounds can be used in broiler nutrition as a protein antioxidizing agent, especially in perspective of the long storage of meat under freezing conditions.
EN
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-04-28
zaakceptowano
2015-09-11
online
2015-11-27
Twórcy
  • Department of Animal Products Technology and Quality Management, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
  • Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, 31 Norwida Str., 50-375 Wroclaw, Poland
  • Department of Animal Products Technology and Quality Management, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
Bibliografia
  • [1] Soladoye O.P., Juarez M.L., Aalhus J.L., Shand P., Estevez M., Protein oxidation in processed meat: Mechanisms and potential implications on human health, Comp. Rev. Food Sci. Food Safety, 2015, 14, 106-122.[Crossref]
  • [2] Lund M.N., Heininen M., Baron C.P., Estevez. M., Protein oxidation in muscle foods: A review, Mol. Nutr. Food Res., 2011, 55, 83–95.
  • [3] Decker E.A., Xiong Y.L., Calvert J.T., Crum A.D., Blanchard S.P. Chemical, physical, and functional properties of oxidized turkey white muscles myofibrillar proteins, J. Agric. Food Chem., 1993, 41, 186−189.[Crossref]
  • [4] Xiong Y.L. Protein oxidation and implications for muscle food quality. In Decker E., Faustman C. & Lopez-Bote C.J. (Eds.), Antioxidants in muscle foods, John Wiley & Sons, Inc., New York, 2000
  • [5] Estevez M., Protein carbonyls in meats systems: A review, Meat Sci., 2011, 89, 259–279.[Crossref]
  • [6] Traore S., Aubry L., Gatellier P., Przybylski W., Jaworska D., Kajak-Siemaszko K., et. al., Higher drip loss is associated with protein oxidation, Meat Sci., 2012, 90, 917–924.[Crossref]
  • [7] Stadtman E.R., Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences, Free Rad. Biol. Med., 1990, 9, 315-325.
  • [8] Davies K.J.A., Degradation of oxidized proteins by the 20S proteasome, Biochimie, 2001, 83, 301-310.
  • [9] Zhang W., Xiao S., Ahn D.U., Protein oxidation: basic principles and implications for meat quality. Crit. Rev Food Sci. Nutr., 2013, 53,1191– 1201.[Crossref]
  • [10] Burcham P.C., Kuhan Y.T., Introduction of carbonyl groups into proteins of the lipid peroxidation product, malondialdehyde. Biochem. Biophys. Res. Commun., 1996, 220, 996–1001.
  • [11] Berlett B.S., Stadtman E.R., Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem., 1997, 272, 20313-20316.
  • [12] Refsgaard H., Tsai L., Stadtman E.R., Modifications of proteins by polyunsaturated fatty acid peroxidation products, Proc. Natl. Acad. Sci. USA, 2000, 97, 611–616.
  • [13] Amici A., Levine R.L., Tsai L., Stadtman E.R., Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed reactions, J. Biol. Chem., 1989, 264, 3341–3346.
  • [14] Decker E.A., Livisay S.A., Zhou S., Mechanisms of endogenous skeletal muscle antioxidants: Chemical and physical aspects. In Decker E., Faustman C. & Lopez-Bote C.J. (Eds.), Antioxidants in muscle foods. John Wiley & Sons Inc., New York, 2000
  • [15] Giulivi C., Davies K.J., Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by the 19 S proteasome, J. Biol. Chem., 1993, 268, 8752–8759.
  • [16] Jacob C., Giles G.I., Giles N.M., Sies H., 2003. Sulfur and selenium: The role of oxidation state in protein structure and function, Angew. Chem., 2003, 42, 4742-4758.[Crossref]
  • [17] Faure P., Lafond J.L., Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation, Anal. Free Rad. Biol. Sys., 1995, 237-248.
  • [18] Xiong Y.L., Decker E.A., Alterations in muscle protein functionality byoxidative and antioxidative processes, J. Muscle Foods, 1995, 6, 139-160.[Crossref]
  • [19] Delles R.M., Xiong Y.L., True A.D., Ao T., Dawson K.A., Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity, Poult. Sci., 2014, 93, 1561-1570.
  • [20] Kohrle J., Brigelius-Flohe R., Bock A., Gartner R., Meyer O., Flohe L., Selenium in biology: Facts and medical perspectives, Biol. Chem., 2000, 381, 849-864.
  • [21] Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G, et. al., Determination of carbonyl content in oxidatively modified proteins. Methods Enzymology, 186, Lorand C.L., (ed.) Academic Press, New York, NY, 1990
  • [22] Srinivasan S., Xiong Y.L., Decker E.A., Inhibition of protein and lipid oxidation in beef heart surimi-like material by antioxidants and combinations of pH, NaCl, and buffer type in the washing media, J. Agric. Food Chem., 1996, 44, 119-125.[Crossref]
  • [23] Ellman G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys, 1959, 82, 70-77.[Crossref]
  • [24] Niwa E., Inuzuka K., Nowsad A.K.M. Liu D, Kanoh S., Contribution of SS bonds to the elasticity of actomyosin gel in which coexisting transglutaminase was inactivated. Fish. Sci., 1995, 61, 438–440.
  • [25] Surai P.F. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick, Brit. Poult. Sci., 2000, 41, 235-243.[Crossref]
  • [26] Sacchetti G., DiMattia C., Pittia P., Martino G., Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat, Meat Sci., 2008, 80, 1081–1085.
  • [27] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Rad. Biol. Med., 1999, 26, 1231–1237.
  • [28] Jang A., Liu X.D., Shin M.H., Lee B.D., Lee S.K., Lee J.H., et. al., Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix, Poult. Sci., 2008, 87, 2382-2389.
  • [29] Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay, Anal. Biochem., 1996, 239, 70–76.
  • [30] Choct M., Naylor A.J., Reinke N., Selenium supplementation affects broiler growth performance, meat yield and feather coverage, Br. Poult. Sci., 2004, 45, 677-83.[Crossref]
  • [31] Wolfram S., Berger B., Grenacher B., Scharrer E., Transport of seleno amino acids and their sulphur analogues across the intestinal brush border membrane, J. Nutr., 1989, 119, 706–712.
  • [32] Wolfram S., Berger B., Scharrer E., Transport of selenomethionine and methionine across the intestinal brush border membrane. In: Wendal A. (ed.): Selenium in biology and medicine. Proceed. 4th Int. Symp. Selenium in Biol. Med., Springer-Verlag, Berlin. 1989
  • [33] Spears J.W., Grimes J., Lloyd K., Ward T.L., Efficacy of a novel organic selenium compound (zinc-selenomethionine) in broiler chicks, Proceed. 1st Latin Am. Cong. Anim. Nutr., Cancun, Mexico, 2003, 197–198.
  • [34] Ip C., Lessons from basic research in selenium and cancer prevention, J. Nutr., 1998, 128, 1845–54.
  • [35] Fleming J., Ghose A., Harrison P.R., Molecular mechanisms of cancer prevention by selenium compounds, Nutr. Cancer, 2001, 40, 42–49.
  • [36] Wang Z.G., Pan X.J., Peng Z.Q., Zhao R.Q., Zhou G.H., Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage, Poultr. Sci., 2009, 88, 1096–1101[Crossref]
  • [37] Estevez M., Morcuende D., Ventanas S., Determination of oxidation, Mollet L.M.L., Toldra F. (Eds.), Handbook of processed meat and poultry analysis, CRC Press, Boca Raton, FL, USA, 2008
  • [38] Assmann A., Briviba K., Sies H., Reduction of methionine selenoxide to selenomethionine by glutathione, Arch. Biochem. Biophys., 1998, 349, 201–203.
  • [39] Whanger P.D., Vendeland S.C., Beilstein M.A., In: Trace Elements in Man and Animals TEMA 8, pp. 119–126, Anke M., Meissner D., Mills C. L. (eds.), Verlag Media Touristik, Gersdorf, 1993
  • [40] Spallholz J.E., On the nature of selenium toxicity and carcinostatic activity, Free Rad. Biol. Med., 1994, 17, 45–64.
  • [41] Petrovic V., Marcincak S., Popelka P., Nollet L., Kovac G., Effect of dietary supplementation of trace elements on the lipid peroxidation in broiler meat assessed after a refrigerated and frozen storage, J. Anim. Feed Sci., 2009, 18, 499–507.[Crossref]
  • [42] Soyer A., Ozalp B., Dalmis U., Bilgin V., Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat, Food Chem., 2010, 120, 1025–1030.
  • [43] Dean R.T., Fu S., Stocker R., Davies M.J., Biochemistry and pathology of radical-mediated protein oxidation, Biochem. J., 1997, 324, 1-18.
  • [44] Rehder D.S., Borges C.R., Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding, Biochemistry, 2010, 49, 7748–7755.[Crossref]
  • [45] Seko Y., Saito Y., Kitahara J.,Imura N., Active oxygen generation by the reaction of selenite with reduced glutathione in vitro, Wendel A. (Ed.), Selenium in biology and medicine, Springer-Verlag, New York, 1989
  • [46] Yongsawatdigul J., Park J.W. Biochemical and conformation changes of actomyosin from threadfin bream stored in ice, J. Food Sci., 2002, 67, 985-990.
  • [47] Gopalakrishna R., Gundimeda U., Antioxidant regulation of protein kinase C in cancer prevention, J. Nutr., 2002, 132, 3819S–3823S.
  • [48] Ganther, H.E., Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis, 1999, 20, 1657-1666.[Crossref]
  • [49] Turell L., Botti H., Carballal S., Ferrer-Sueta G., Souza J.M., Duran R., et. al., Reactivity of sulfenic acid in human serum albumin, Biochem., 2008, 47, 358–367.[Crossref]
  • [50] Serpen A., Gokmen V., Fogliano V., Total antioxidant capacities of raw and cooked meats, Meat Sci., 2012, 90, 60–65.[Crossref]
  • [51] Qwele K., Muchenje V., Oyedemi S.O., Moyo B., Masika P.J., Effect of dietary mixtures of moringa (Moringa oleifera) leaves, broiler finisher and crushed maize on anti-oxidative potential and physico-chemical characteristics of breast meat from broilers, Afr. J. Biotechnol., 2013, 12, 290-298.
  • [52] Martysiak-Zurowska D., Wenta W., A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk, Acta Sci. Pol., Technol. Aliment., 2012, 1, 83-89.
  • [53] Gunter S.A., Beck P.A., Hallford D.M., Effects of supplementary selenium source on the blood parameters in beef cows and their nursing calves, Biol. Trace Elem. Res., 2013, 152, 204-211.
  • [54] Wang Y.B., Xu B.H., Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens, Anim. Feed Sci. Technol., 2008, 144, 306-314.
  • [55] Wang Y.X., Zhan X.A., Yuan D., Zhang X.W., Wu R.J., Effects of selenomethionine and sodium selenite supplementation on meat quality, selenium distribution and antioxidant status in broilers, Czech J. Anim. Sci., 2011, 56, 305-313.
  • [56] Ahmad H., Tian J., Wang J., Khan M.A., Wang Y., Zhang L., et. al., Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat, J. Agric. Food Chem., 2012, 60, 7111-20.
  • [57] Baowei W., Guoqing H., Qiaoli W., Bin Y., Effects of yeast selenium supplementation on the growth performance, meat quality, immunity, and antioxidant capacity of goose, J. Anim. Physiol. Anim. Nutr. 2011, 95, 440–448.
  • [58] Surai P.F., Selenium in poultry nutrition. Antioxidant properties, deficiency and toxicity, World’s Poult. Sci. J., 2002, 58, 333-347
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.